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Abstract
This study presents a Monte Carlo method (CMSY) for estimating fisheries reference

points from catch, resilience and qualitative stock status information on data-lim-

ited stocks. It also presents a Bayesian state-space implementation of the Schaefer

production model (BSM), fitted to catch and biomass or catch-per-unit-of-effort

(CPUE) data. Special emphasis was given to derive informative priors for productiv-

ity, unexploited stock size, catchability and biomass from population dynamics the-

ory. Both models gave good predictions of the maximum intrinsic rate of

population increase r, unexploited stock size k and maximum sustainable yield

MSY when validated against simulated data with known parameter values. CMSY

provided, in addition, reasonable predictions of relative biomass and exploitation

rate. Both models were evaluated against 128 real stocks, where estimates of bio-

mass were available from full stock assessments. BSM estimates of r, k and MSY

were used as benchmarks for the respective CMSY estimates and were not signifi-

cantly different in 76% of the stocks. A similar test against 28 data-limited stocks,

where CPUE instead of biomass was available, showed that BSM and CMSY esti-

mates of r, k and MSY were not significantly different in 89% of the stocks. Both

CMSY and BSM combine the production model with a simple stock–recruitment

model, accounting for reduced recruitment at severely depleted stock sizes.

Keywords Bayesian state-space model, biomass dynamic model, data-limited stock

assessment, Monte Carlo method, stock–recruitment relationship, surplus

production model
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Introduction

Most commercially exploited fish stocks in the world

lack formal fisheries reference points (Froese et al.

2012; Zhou et al. 2012), and thus, the degree of

exploitation and the status of the stocks are largely

unknown. However, legislation in New Zealand

(MFNZ 2008), Australia (DAFF 2007), the United

States (MSA 2007) and recently also in the Euro-

pean Union (CFP 2013) requires management of all

exploited stocks, including those with limited data.

Several methods for the assessment of data-limited

stocks have been developed (e.g., Cope and Punt

2009; MacCall 2009; Dick and MacCall 2011;

Thorson et al. 2012; Punt et al. 2013; Carruthers

et al. 2014), and recent reviews of these methods

(ICES 2014; Rosenberg et al. 2014) have found the

Catch-MSY method of Martell and Froese (2013) to

be a promising approach. This study revisits the

Catch-MSY method, addresses its shortcomings,

namely the biased estimation of unexploited stock

size and productivity, and adds estimation of bio-

mass and exploitation rate. It also addresses a gen-

eral shortcoming of production models, namely the

overestimation of productivity at very low stock

sizes (Schnute and Richards 2002; ICES 2014). The

predictions of the new method (CMSY) are validated

against 48 simulated stocks and evaluated against

159 fully or partly assessed real stocks.

Material and methods

All data files, the R-code of the methods and the

figures, a Supplement with detailed presentation of
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the methods, default rules for priors and results for

48 simulated and 159 real stocks, and a short text

on how to use CMSY are available online for

download from http://oceanrep.geomar.de/33076/.

For convenience, the acronyms and symbols used

in this study are summarized in Table 1.

General description of method

A time series of catches can be viewed as a sequence

of yields produced by the available biomass with a

given productivity. If two of the three variables,

yield, biomass and productivity, are known, then

the third can be estimated. Typical production mod-

els, such as the one by Schaefer (1954), use time

series of catch and abundance to estimate produc-

tivity. Instead, the CMSY method presented in this

study uses catch and productivity to estimate bio-

mass, providing substantial advancement on the

Catch-MSY method of Martell and Froese (2013),

which focuses on the estimation of maximum sus-

tainable yield (MSY). CMSY estimates biomass,

exploitation rate, MSY and related fisheries refer-

ence points from catch data and resilience of the

species. Probable ranges for the maximum intrinsic

rate of population increase (r) and for unexploited

population size or carrying capacity (k) are filtered

with a Monte Carlo approach to detect ‘viable’ r-k

pairs. A parameter pair is considered ‘viable’ if the

corresponding biomass trajectories calculated with

a production model are compatible with the

observed catches in the sense that predicted biomass

does not become negative, and is compatible with

prior estimates of relative biomass ranges for the

beginning and the end of the respective time series.

Under these conditions, a plot of viable r-k pairs typ-

ically results in a triangular-shaped cloud in log-

space (Fig. 1). The Catch-MSY algorithm (Martell

and Froese 2013) was designed to select the most

probable r-k pair as the geometric mean of this dis-

tribution. CMSY differs from the Catch-MSY method

by searching for the most probable r not in the cen-

tre but rather in the tip region of the triangle. This

is based on the underlying principle that defines r as

the maximum rate of increase for the examined

population, which should be found among the high-

est viable r-values. In other words, a given time ser-

ies of catches could be explained by a wide range of

large stock sizes and low productivity, or by a nar-

row range of small stock sizes and high productiv-

ity, such as in the tip of the triangle (Fig. 1). As r is

defined as maximum net productivity (Schaefer

1954; Ricker 1975), the tip of the triangle is where

it should be found.

For verification, the predictions of the CMSY

method are compared against simulated data

where the ‘true’ values of parameters and biomass

data are known. For evaluation against real-world

Table 1 Acronyms and symbols used in this study.

Acronym/Symbol Indicating Unit

B Biomass, total weight of exploited fish in the water tonnes
Bmsy Biomass capable of producing MSY tonnes
BSM Bayesian Schaefer model for estimation of r, k, MSY and q
Ct Catch in a given year tonnes year�1

CMSY Monte Carlo method for estimating r, k, MSY, biomass and exploitation
CPUE Catch per unit effort n h�1 or kg h�1

Fmsy Rate of fishing mortality compatible with MSY: Fmsy = 0.5 r year�1

k Parameter of the Schaefer model indicating unexploited stock size tonnes
K Parameter of the von Bertalanffy somatic growth equation year�1

M Rate of natural mortality year�1

MSY Maximum sustainable yield: MSY = r k/4 tonnes year�1

Pt Relative biomass: Pt = Bt/k
q Catchability coefficient: CPUEt = q Bt

r Maximum intrinsic rate of population increase year�1

t Instant of time; subscript indicating annual values: Ct, Bt or CPUEt years
tmax Maximum age years
tgen Generation time years
u Exploitation rate: ut = Ct/Bt

umsy Exploitation rate that produces MSY at equilibrium
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fisheries, the predictions of the CMSY method are

compared against corresponding parameters and

abundance estimates derived from fully or partly

assessed stocks, where biomass or catch-per-unit-

effort (CPUE) data are available in addition to

catch data. For this purpose, a Bayesian state-

space implementation of the Schaefer model (BSM)

is developed, where r, k and MSY are predicted

from catch and abundance data. The basic bio-

mass dynamics are governed by Equation 1:

Btþ1 ¼ Bt þ r 1� Bt

k

� �
Bt � Ct ð1Þ

where Bt+1 is the exploited biomass in the subse-

quent year t+1, Bt is the current biomass, and Ct
is the catch in year t.

To account for depensation or reduced recruit-

ment at severely depleted stock sizes, such as pre-

dicted by all common stock–recruitment functions

(Beverton and Holt 1957; Ricker 1975; Barrow-

man and Myers 2000), a linear decline of surplus

production, which is a function of recruitment,

somatic growth and natural mortality (Schnute

and Richards 2002), is incorporated if biomass

falls below ¼ k (Equation 2).

Btþ1 ¼ Bt þ 4
Bt

k
r 1� Bt

k

� �
Bt � CtjBt

k
\0:25 ð2Þ

The term 4 Bt/k assumes a linear decline of

recruitment below half of the biomass that is cap-

able of producing MSY.

The BSM was implemented as a Bayesian state-

space estimation model (Meyer and Millar 1999;

Millar and Meyer 1999), which allowed account-

ing for variability in both population dynamics

(process error) and measurement and sampling

(observation error) (Thorson et al. 2014).

The parameters estimated by CMSY and BSM

relate to standard fisheries reference points such

that MSY = r k/4, the fishing mortality corre-

sponding to MSY is Fmsy = 0.5 r, the biomass cor-

responding to MSY is Bmsy = 0.5 k (Ricker 1975;

Schaefer 1954) and the biomass below which

recruitment may be compromised is half of Bmsy

(Haddon et al. 2012; Carruthers et al. 2014; Fro-

ese et al. 2015).

Selection of real stocks and generation of

simulated stocks

Altogether 128 fully assessed stocks with biomass

data, 28 data-limited stocks with CPUE data and

three stocks with less than 9 years of abundance

data were used for the evaluation of the CMSY

method. Catch and biomass data were extracted

from stock assessment documents that were avail-

able online or were provided by the respective

assessment bodies for the Pacific, North and South

Atlantic, the Mediterranean and the Black Sea (see

Data S1 for details). In addition to the real stocks,

48 simulated stocks with catch and abundance

data were created. The goal was to create a range

of biomass scenarios, including strongly as well as

0.2 0.3 0.4 0.5 0.6 0.7 0.8

20
0

25
0

30
0

35
0

40
0

50
0

r

k

Figure 1 Viable r-k pairs for Pacific Bluefin tuna (Thunnus orientalis, Scombridae, BFTuna_P). The viable r-k pairs that

fulfilled the CMSY conditions are shown in grey. The most probable r-k pair is marked by the black cross, with

indication of approximate 95% confidence limits. The black dots show the estimates of the BSM method, with the white

cross indicating the 95% confidence limits. [CMSY_46eFig 1.R].
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lightly depleted stocks, with monotone stable or

monotone changing (i.e. steadily decreasing or

increasing) or with alternating biomass trajectories

(see Data S1 details).

CMSY analysis

Determining the boundaries of the r-k space

To determine prior r-ranges for the species under

assessment, the proxies for resilience of the species

as provided in FishBase (Froese et al. 2000; Froese

and Pauly 2015) were translated into the r-ranges

shown in Table 2.

Next, a prior range for k was derived based on

three assumptions. First, unexploited stock size k is

larger than the largest catch in the time series,

because it is highly unlikely that a fishery finds

and catches, in a single year, all individuals of a

previously unexploited stock (Vasconcellos and

Cochrane 2005; Martell and Froese 2013). Thus,

maximum catch in the time series was used to

inform the lower bound of k. Second, the maxi-

mum sustainable catch expressed as a fraction of

the available biomass (Fmsy) depends on the pro-

ductivity of the stock. This relationship was

accounted for by dividing maximum catch by the

upper and lower bound of r and using these val-

ues as the benchmarks for the lower and upper

bounds of k. Third, maximum catch will constitute

a larger fraction of k in substantially depleted

rather than lightly depleted stocks. These consider-

ations are summarized in Equation 3 and 4. Suita-

ble ranges for the catch/productivity ratios were

determined empirically with simulated data where

the true value of k was known.

klow ¼ maxðCÞ
rhigh

; khigh ¼ 4maxðCÞ
rlow

ð3Þ

where klow and khigh are the lower and upper

bounds of the prior range of k, max(C) is the

maximum catch in the time series, rlow is the

lower bound of the range of r-values that the

CMSY method will explore and rhigh is the upper

bound of that range.

klow ¼ 2maxðCÞ
rhigh

; khigh ¼ 12maxðCÞ
rlow

ð4Þ

where variables and parameters are as defined in

Equation 3.

Equation 3 was applied to stocks with low prior

biomass at the end of the time series and Equa-

tion 4 was applied to stocks with high biomass. To

reduce the influence of extreme catches, catch

data were smoothed by a 3-year moving average.

Setting prior biomass ranges

To provide prior estimates of relative biomass at

the beginning and end of the time series, and

optionally also in an intermediate year, one of the

possible three broad biomass ranges shown in

Table 3 was chosen, depending on the assumed

depletion level. This was done automatically by

default rules described in the online Supplement.

Obvious wrong priors resulting from the default

rules, such as setting initial biomass to medium

when instead the stock was still lightly exploited

or already severely depleted at the beginning of

the time series, were noted and subsequently

adjusted manually. Thus, the results of this study

refer to a scenario where managers are assumed

to not have made gross errors in setting broad

prior biomass ranges. For example, experts attend-

ing the ICES WKLIFE IV and V workshops in Lis-

bon in October 2014 and 2015 were able to

describe stock status and exploitation histories for

some of the North Atlantic stocks, which were

then translated into the corresponding relative bio-

mass ranges given in Table 2 (ICES 2014, 2015).

Finding viable r-k pairs

For the detection of viable r-k pairs, a random r-k

pair is selected from within the prior ranges for r

and k. Then, a starting biomass is selected from
Table 2 Prior ranges for parameter r, based on

classification of resilience in FishBase (Froese and Pauly

2015).

Resilience Prior r-range

High 0.6–1.5
Medium 0.2–0.8
Low 0.05–0.5
Very low 0.015–0.1

Table 3 Default prior biomass ranges relative to k.

Prior biomass B/k

Low 0.01–0.4
Medium 0.2–0.6
High 0.5–0.9

510 © 2016 John Wiley & Sons Ltd, F I SH and F I SHER IES , 18, 506–526
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the prior biomass range for the first year and

Equation 1 or 2 is used to calculate the predicted

biomass in subsequent years. An r-k pair is dis-

carded if any of the following conditions applies:

1. The predicted biomass is smaller than 0.01 k

(the stock crashes);

2. The predicted biomass falls outside the prior

biomass range of the intermediate year;

3. The predicted biomass falls outside the prior

biomass range of the final year;

If none of these conditions apply, then the r-k

pair and the trajectory of predicted biomass are

considered viable and are stored for analysis. For

the purpose of this study, this process was applied

to 10 000–200 000 random r-k pairs, 11–21
start-biomass values and three to six random error

patterns for each r-k-start-biomass combination.

To speed up processing, the search for viable r-k

pairs is terminated once more then 1000 pairs are

found. For triangles with a thin tip, an additional

search is conducted in the tip region.

Finding the most probable values of r, k, MSY and

predicted biomass

CMSY seeks the most probable r-k pair near the

tip of the triangle of viable pairs (Fig. 1). For this

purpose, all viable r-values are assigned to 25–
100 bins of equal width in log-space. The 75th

percentile of the mid-values of occupied bins is

taken as the most probable estimate of r. This pro-

cedure gives equal weight to all occupied bins and

reduces the bias caused by the triangular (instead

of ellipsoid) shape of the cloud of viable r-k pairs

(compare cloud of probable r-k pairs estimated by

BSM in Fig. 1). Approximate 95% confidence lim-

its of the most probable r are obtained as 51.25th

and 98.75th percentiles of the mid-values of occu-

pied bins, respectively.

The most probable value of k is determined from

a linear regression fitted to log(k) as a function of

log(r), for r-k pairs where r is larger than median of

mid-values of occupied bins, with log(4MSY) as

intercept and with a fixed slope of �1, based on the

rearranged Schaefer model shown in Equation 5.

Note that all r-k pairs on this line have the same

intercept and thus give the same value of MSY.

MSY ¼ rk

4
! logðkÞ ¼ logð4MSYÞ+ð�1Þ logðrÞ ð5Þ

Approximate 95% confidence limits of k are

obtained by adding the standard deviation of the

residuals of the regression line to the predicted k-

value at the lower confidence limit of r, and sub-

tracting it from the k-value predicted for the upper

confidence limit of r. MSY and its 95% confidence

limits are obtained as geometric mean of the MSY

values calculated for each of the r-k pairs where r is

larger than the median. Viable biomass trajectories

were restricted to those associated with an r-k pair

that fell within the confidence limits of the CMSY

estimates of r and k. The median of the predicted

biomass values for each year was used as the most

probable biomass and the 2.5th and 97.5th per-

centiles were used as indicators of the range that

contained 95% of the biomass predictions.

Bayesian Schaefer analysis

Transforming r-k bounds into informative priors

For BSM, the uniform r-ranges shown in Table 2

were translated into prior densities with a central

value. An examination of the density of the viable

r-values resulting from CMSY analysis of simulated

data was performed using a v2-test against several
standard distributions. The results confirmed that

r is log-normally distributed and suggested that

the mean of the r-ranges in Table 2 provides a

reasonable central value. The height of the density

function was inversely related to the width of the

r-range, best fit by an inverse range factor (irf)

(Equation 6). The standard deviation of r in log-

space was then described by a uniform distribution

between 0.001 irf and 0.02 irf.

irf ¼ 3

ðrhigh � rlowÞ ð6Þ

where irf is an inverse range factor used in deter-

mining the prior density of r for BSM, and rhigh and

rlow indicate the prior r-range as defined in Table 2.

The uniform k-ranges used by CMSY (Equa-

tions 3 and 4) were translated into a prior density

function by assuming that k was log-normally dis-

tributed and that the mean of the k-ranges pro-

vided a reasonable central value. The standard

deviation of the normal distribution in log-space

was assumed to be a quarter of the distance

between the central value and the lower bound of

the k-range (McAllister et al. 2001).

Determining a prior for catchability

Data-limited stocks have, by definition, no estima-

tion of biomass but may have, at least for some

years, an estimation of stock abundance as CPUE
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in units of numbers per hour of fishing or as a bio-

mass index derived from survey catches. Such an

abundance index is related to stock biomass by a

catchability coefficient q (Equation 7).

CPUEt ¼ qBt ð7Þ
where CPUEt is mean catch per unit effort in year

t, Bt is available biomass in year t and q is the

catchability coefficient. The basic dynamics of the

corresponding Schaefer production model for

abundance as CPUE can therefore be expressed in

the form of Equation 8.

CPUEtþ1¼CPUEtþr 1�CPUEt

qk

� �
CPUEt�qCt ð8Þ

where variables and parameters are as defined in

Equations 1 and 7. Priors for q were derived from

the Schaefer equilibrium equation for catch (Equa-

tion 9).

Y ¼ rB 1� B

k

� �
ð9Þ

where Y is the equilibrium yield for any given bio-

mass B, and other parameters are as defined in

Equation 1.

Setting B/k = 0.5, B = CPUE/q and Y = catch

gives q = 0.5 r CPUE/C for MSY-level catch and

biomass. Setting B/k = 0.25 for half MSY-level bio-

mass gives q = 0.75 r CPUE/C. Suitable multipliers

for low and high biomass and prior r-ranges were

derived empirically from simulated data. For stocks

with high recent prior biomass, priors for q were

derived as shown in Equation 10 and 11.

qlow ¼ 0:25 rpgm CPUEmean

Cmean
ð10Þ

where qlow is the lower prior for the catchability

coefficient for stocks with high recent biomass,

rpgm is the geometric mean of the prior range for

r, CPUEmean is the mean of catch per unit effort

over the last 5 or 10 years, and Cmean is the mean

catch over the same period.

qhigh ¼ 0:5 rhigh CPUEmean

Cmean
ð11Þ

where qhigh is the upper prior for the catchability

coefficient for stocks with high recent biomass,

rhigh is the upper prior range for r and all other

variables are as defined in Equation 10.

For stocks with low recent prior biomass, the

multipliers were changed from 0.25 to 0.5 for qlow
and from 0.5 to 1.0 for qhigh. Mean catch and CPUE

were taken over the last 5 years for species with

medium and high resilience or over the last

10 years for species with low or very low resilience.

For the Bayesian implementation of the Schaefer

model, the q-range was translated into a prior den-

sity function by assuming that q was log-normally

distributed and that the mean of the log q-range

provided a reasonable central value, with a stan-

dard deviation assumed to be a quarter of the dis-

tance between the central value and qlow
(McAllister et al. 2001). The implementation of

BSM for CPUE data used the same settings as

applied to observed or simulated biomass (see

below). If less than 9 years of CPUE data were

available, the Schaefer model was not fit. Instead,

CPUE was plotted on a second y-axis in the plot of

biomass predicted by CMSY (see example in Fig. 6).

Implementation of the Bayesian Schaefer model

The state-space model implementation of the BSM

(Millar and Meyer 1999) for catch and biomass and

for catch and CPUE are included in the CMSY R-

code, which is available as part of the online Supple-

ment. The JAGS software (Plummer 2003) was

used for sampling the probability distributions of

the parameters with the Markov chain Monte Carlo

method. To facilitate mixing of the Gibbs samples,

annual biomass was expressed relative to the unex-

ploited biomass with Pt = Bt/k (Meyer and Millar

1999). Basic parameter settings included three sam-

pling chains with a chain length of 60 000 steps

each and with a burn-in phase of 30 000 steps. For

the analysis of output, only every 10th value was

used to reduce autocorrelation. All posterior param-

eter estimates were assumed to be approximately

log-normally distributed, with the median used as

the central value and 95% confidence intervals

approximated by the 2.5th and 97.5th percentiles

to find values at which test statistics attain less than

0.05 significance (Gelman et al. 1995; McAllister

et al. 2001; Owen 2013).

Results

Results for selecting priors with default rules for r,

k, q and biomass

To determine the prior ranges for r, resilience cate-

gories (very low, low, medium, high) at the species

level were used from www.fishbase.org for fishes

and were selected manually for the four stocks of

invertebrates. These categories, combined with

512 © 2016 John Wiley & Sons Ltd, F I SH and F I SHER IES , 18, 506–526
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catch data and prior biomass ranges, led to the

detection of viable r-k pairs in 140 of 159 stocks

(88%). In 19 stocks, the resilience category was

changed manually to an adjacent lower or upper

category in order to find viable r-k pairs. In about

half of these cases (nine of 19), the change was to

an upper resilience category, that is there was no

apparent bias in the default rules towards lower or

higher categories.

The rules for deriving the prior ranges for k from

maximum catch and prior r were sufficient in all

cases; so that no manual adjustments were done.

Priors for catchability q were derived from equilib-

rium reasoning and recent catches (Equations 9–
11). The prior ranges included the ‘true’ value of q

in 19 of 24 simulated stocks (79%, see Table 8).

To determine prior biomass ranges for the start

and end of the time series, and for an optional

intermediate year, default rules were used as

described in the online Supplement. The resulting

prior biomass ranges were compatible with

observed biomass or abundance in 92 of 159

stocks (58%). Initial biomass was manually cor-

rected in 14 stocks (9%), intermediate biomass in

11 stocks (9%) and final biomass in 54 stocks

(34%). See data on resilience and biomass priors

in AllStocks_ID20.xlsx in the online Supplement

material.

Results for simulated stocks with catch and

biomass

The CMSY and BSM methods were applied to sim-

ulated catch and biomass data where the ‘true’

parameter values were known. Tabulated results

and detailed analyses for every stock are available

in the online Supplement (Tables S3, S4 and

Appendix I in Data S1). In most simulated stocks

(75–96%, depending on the parameter, see

Table 4), the 95% confidence limits of the esti-

mates by CMSY and BSM included the true value

used in the simulations and were thus not signifi-

cantly different from the ‘true’ values (Smith

1995). Results for CMSY and BSM were very simi-

lar. Of the six scenarios where CMSY estimates of

r did not include the ‘true’ value, four had high

final biomass. Similarly, all four scenarios where

BSM estimates did not include the ‘true’ value had

high final biomass.

A comparison of CMSY and BSM estimates vs.

‘true’ values for MSY, r, k, last biomass and last

exploitation rate showed that the median ratios

and the ranges that contain 90% of the estimates

were very similar for both methods (Table 5). The

median ratios were close to unity, with maximum

deviations of 0.80 and 1.06. The 5th–95th per-

centile ranges, which contain 90% of the esti-

mates, included the expected ratio of 1.0 in all

cases and were bracketed by the ratios 0.69 and

1.62 for BSM and 0.20 and 5.71 for CMSY. The

latter strong deviation referred to relative biomass

in the simulated stock HL_M. In this case, the

‘true’ value in the final year was 0.002 k, whereas

the CMSY estimate was 0.109 k. The deviation is

caused by the default prior for low biomass of

0.01–0.4 k, which excludes the ‘true’ biomass.

Results for fully assessed stocks

The CMSY and BSM methods were applied to 128

real stocks for which catch and biomass data were

available from recent stock assessments. Detailed

Table 4 Number and percentage of 24 simulated stocks which contain the true parameter value within the 95%

confidence limits of the respective CMSY or BSM estimate. The acronyms of the stocks where the confidence limits do

not include the true value are presented in the column ‘Missed stocks’ (Appendix I in Data S1).

[SimCatchResults_6.xlsx].

Parameter
True value included in
95% confidence limits Per cent Missed stocks

r CMSY 18 75.0 HH_M, HLH_M, LH_H, LH_VL, LHL_M, LHL_VL
r BSM 19 79.2 HH_M, HL_H, HLH_M, LH_H, LH_M
k CMSY 20 83.3 HLH_M, LH_H, LH_VL, LHL_M
k BSM 20 83.3 HH_M, HL_M, LH_H, LHL,VL
MSY CMSY 23 95.8 LL_M
MSY BSM 18 75.0 HH_M, HL_H, HL_M, HLH_VL, LH_M, LHL_VL
Last B/k CMSY 22 91.7 HL_M, LHL_M
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analyses are available for every stock in

Appendix II and summarized in Tables S5 and S6

of Data S1. For most stocks (71–79%, depending

on the parameter, see Table 6), the 95% confi-

dence limits of the CMSY estimates included the

most probable BSM estimate, indicating good

agreement between the methods (Smith 1995). In

5–16% of the stocks, the confidence limits of both

methods did not overlap, indicating that the pre-

dictions were significantly different (Knezevic

2008).

A comparison of CMSY and BSM estimates for

MSY, r, k, final biomass and exploitation rate in

the final year shows that the median ratios were

generally close to 1.0, with maximum deviations

of 0.92 and 1.08. The 5th–95th percentile ranges

always included unity and were bracketed by the

ratios 0.47 and 2.16 for r, k and MSY, but were

wider (0.34–2.91) for the last year’s CMSY esti-

mates of biomass and exploitation rate compared

to observed data (Table 7).

Results for simulated stocks with catch and CPUE

The CMSY and BSM methods were applied to sim-

ulated catch and CPUE data where the true

parameter values were known. Tabulated results

and detailed analyses for every stock (Appendix III

in Data S1) are available in the online Supplement

(Tables S7, S8 and Appendix III in Data S1). The

use of CPUE rather than biomass did not affect

the CMSY results, because neither biomass nor

CPUE are used by CMSY. The Bayesian implemen-

tation of the Schaefer model for catch and CPUE

data required the additional estimation of catcha-

bility q to transform CPUE into biomass. The 95%

confidence limits of q estimated by BSM included

the true value in 33% of the cases (Table 8), how-

ever, with mostly narrow and only three substan-

tial misses (Table S8 in Data S1). For the other

parameters (r, k, MSY, last biomass), the 95% con-

fidence limits estimated by CMSY included the true

values in 67–96% and for BSM in 50–88% of the

cases (Table 8). The lower success rate of BSM is

due to its confidence limits being generally nar-

rower than for CMSY.

A comparison of CMSY estimates vs. true values

for MSY, r, k and last biomass showed median

ratios close to 1.0 (0.99–1.15) with ranges that

contained 90% of the estimates from 0.51 to 5.05.

Table 5 Comparison of the estimation of reference

points with the BSM and with the CMSY method, applied

to 24 simulated data sets where the true values of the

reference points were known. [SimCatchResults_6.xlsx].

Ratio Median
5th
percentile

95th
percentile

MSY BSM/true MSY 1.01 0.69 1.60
MSY CMSY/true MSY 1.02 0.53 1.62
r BSM/true r 1.05 0.93 1.31
r CMSY/true r 1.06 0.59 1.73
k BSM/true k 0.98 0.79 1.29
k CMSY/true k 1.00 0.58 1.80
Last B/k CMSY/last true b/k 1.10 0.80 5.71
Last u CMSY/last true u 0.85 0.20 1.72
Last u/umsy CMSY/last
true u/umsy

0.80 0.22 1.57

Table 6 Numbers and percentages of 128 real stocks,

where the 95% confidence limits of the CMSY estimate

include the most probable estimate of BSM, indicating

good agreement, and where the confidence limits of both

methods did not overlap, indicating results that are

significantly different. [AllStocks_Results_6.xlsx].

Parameter

BSM estimate
included
n/%

No overlap
n/%

r CMSY 101/78.9 14/10.9
k CMSY 101/78.9 20/15.6
MSY CMSY 97/75.8 6/4.7
Last relative B CMSY 91/71.1 13/10.2

Table 7 Comparison of the estimation of reference

points with the CMSY method and with BSM, applied to

128 fully assessed stocks. [AllStocks_Results_6.xlsx].

Ratio Median
5th
percentile

95th
percentile

r CMSY/r BSM 0.97 0.58 1.62
k CMSY/k BSM 1.00 0.47 2.16
MSY CMSY/MSY BSM 1.02 0.65 1.58
Last B CMSY/last
observed B

0.93 0.34 2.68

Last B/k CMSY/last
observed B/k

0.92 0.47 1.53

Last u CMSY/last
observed u

1.08 0.37 2.91

Last u/umsy CMSY/last
observed u/umsy

1.06 0.48 2.45
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The last number refers to relative biomass in the

simulated stock HL_M, where the ‘true’ value in

the final year was 0.002 k, whereas the CMSY

estimate was 0.096 k. The deviation is caused by

the default prior for low biomass of 0.01–0.4 k,

which excludes the ‘true’ biomass. The BSM

method for data-limited stocks had median ratios

of 0.93–1.07 and 90% ranges from 0.39 to 6.22,

where the latter value stems from the three esti-

mates of q which differed substantially from the

‘true’ value (Table 9).

Results for data-limited stocks

Altogether 31 data-limited stocks were analysed

with the CMSY method. Twenty-eight of these

stocks had sufficiently long (≥9 years) time series

of abundance available so that BSM could also be

applied and CMSY and BSM estimates could be

compared. Detailed analyses for every stock as well

as summary tables are available in the online Sup-

plement (Appendix IV and Tables S9, S10 in Data

S1). In most stocks, the 95% confidence limits of

the CMSY estimates for r, k and MSY included the

most probable BSM estimate. Depending on the

parameter, the 95% confidence limits of CMSY

included the BSM estimate in 68–96% of the

stocks (Table 10), suggesting good agreement

between the methods (Smith 1995). The confi-

dence limits of both methods did not overlap in 4–
14% of the stocks, indicating that the respective

estimates were significantly different (Knezevic

2008). A comparison of CMSY and BSM estimates

for MSY, r, k, final biomass and exploitation rate

in the final year showed that the median ratios

and the ranges containing 90% of the estimates

were similar for both methods (Table 11). The

median ratios were close to 1.0, with maximum

deviations of 1.05 and 1.37. The 5th–95th per-

centile ranges were bracketed by the ratios 0.63

and 1.68 for r, k and MSY, but were wider (0.51–

Table 8 Numbers and percentages of 24 stocks with

simulated catch and CPUE data, where the 95%

confidence limits of BSM or CMSY include the ‘true’ value.

The acronyms of the stocks where the confidence limits of

the respective parameters do not include the ‘true’ value

are given in the column ‘Missed stocks’ (Appendix III in

Data S1). [SimCatchCPUE_Results_6.xlsx].

Parameter

True value
included in 95%
confidence limits

Per
cent Missed stocks

Prior for q 19 79.2 HH_M, HLH_M,
HLH_VL, LH_H,
LH_VL

q BSM 8 33.3 many
r CMSY 18 75.0 HH_M, HLH_M,

LH_H, LH_VL,
LHL_M, LHL_VL

r BSM 12 50.0 many
k CMSY 20 83.3 HLH_M, LH_H,

LH_VL, LHL_M
k BSM 13 54.2 many
MSY CMSY 23 95.8 LL_M
MSY BSM 21 87.5 HLH_VL, LH_VL,

LL_L
Last B CMSY 16 66.7 many
Last B/k CMSY 22 91.7 HL_M, LHL_M

Table 9 Comparison of the estimation of reference points

with BSM and with CMSY, applied to 24 data sets with

simulated CPUE, where the ‘true’ values of the reference

points are known. [SimCatchCPUE_Results_6.xlsx].

Ratio Median
5th
percentile

95th
percentile

q BSM/true q 1.07 0.61 6.22
MSY BSM/true MSY 0.97 0.39 2.03
MSY CMSY/true MSY 1.02 0.51 1.61
r BSM/true r 1.02 0.76 1.56
r CMSY/true r 1.03 0.63 1.74
k BSM/true k 0.93 0.36 1.86
k CMSY/true k 0.99 0.60 1.64
Last B CMSY/last true B 1.15 0.60 5.05

Table 10 Numbers and percentages of the 28 data-

limited stocks where the 95% confidence limits of the

CMSY estimates include the most probable estimate of

BSM, and where the confidence limits of both methods

did not overlap, indicating results that are significantly

different. [CPUEStocks_Results_6.xlsx].

Parameter
BSM estimate included
n/%

No overlap
n/%

r CMSY 27/96.4 1/3.6
k CMSY 27/96.4 27/3.6
MSY CMSY 25/89.3 27/3.6
Last B CMSY 20/71.4 24/14.3
Last relative B CMSY 19/67.9 24/14.3
u CMSY 20/71.4 24/14.3
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12.8) for the final-year estimates of biomass. The

strong deviation was caused by two stocks (cod-

rock, smn-sp) where biomass was severely depleted

to less than 1% of unexploited stock size, while the

default biomass prior used by CMSY still assumed

1–40% of unexploited biomass.

Discussion

Diversity of examined stocks

We collected 159 time series of catch and abun-

dance from various sources, including stocks

from the North and South Pacific, North and

South Atlantic, the Caribbean, the Mediterranean

and the Black Sea. Four stocks belonged to two

species of crustaceans and the remaining stocks

belonged to species of marine fishes, including

five elasmobranchs. Over two-third of the species

were demersal. Other fishes consisted of small

pelagic and highly migratory species such as

tunas and billfishes. Species were distributed

mostly in temperate climate zones, several in sub-

tropical zones, some in polar regions, and only

one in the tropics. Deep-sea fishes were repre-

sented by eleven species. Very low- to medium-

resilience categories were represented by 14 or

more stocks each, but only four stocks fell into

the high-resilience category. Several species were

represented by more than one and up to 12 dif-

ferent stocks. Several time series used in the

analysis started as early as 1930 and most

reached until 2012. The highest catch was

reported for blue whiting (Micromesistius poutas-

sou, Gadidae) with 2.4 million tonnes in the

Northeast Atlantic in 2004, and the largest stock

size was reported for Eastern Bering Sea pollock

(Theragra chalcogramma, Gadidae) with an esti-

mated biomass of 13.1 million tonnes in 1995.

This selection of stocks was reasonably complete

and representative for the Northeast Pacific and

the North Atlantic, but by no means complete or

representative for the other areas or for global

fisheries. However, the selection of stocks covered

a wide range of the diversity of commercial spe-

cies, suggesting that the methods and default

rules for priors used in this study are broadly

applicable.

Priors for r, k and biomass

How useful was resilience from FishBase for

determining prior ranges of r?

The resilience categories from FishBase (Froese

et al. 2000; Froese and Pauly 2015) gave prior

ranges of r that led to similar and therefore pre-

sumably reasonable CMSY and BSM fits for 88%

of the stocks. For the remaining stocks, reason-

able fits were only obtained if the next higher or

lower resilience category was chosen. The even

distribution of these corrections between lower

and upper resilience suggests that these species

were intermediate to the available resilience cate-

gories. Also, for some species, different stocks

required different categories. For example, the two

examined stocks of surmullet (Mullus surmuletus,

Mullidae) gave reasonable fits for CMSY and BSM

only when resilience was set medium for the

North Sea stock (mur-347d) and high for the

Central Mediterranean stock (mullsur_gsa1516).

Similarly, of the eight examined stocks of haddock

(Melanogrammus aeglefinus, Gadidae), seven gave

reasonable fits with the FishBase category of med-

ium resilience, whereas the stock from Georges

Bank (Haddock_GB) only gave a reasonable fit

when resilience was set to low. More generally, if

the prior r-range is set too high, CMSY is unlikely

to find viable r-k pairs; if the prior r-range is set

too low, the r-k space is likely to be flooded with

viable r-k pairs pressing against the upper bound

of r. Thus, while the resilience categories from

FishBase provided a good starting point for prior

ranges of r, users of the CMSY and BSM methods

should carefully consider all available information

and then select the most suitable prior range of r

for the stock in question, independent of the fixed

ranges used for the purpose of this study

(Table 2).

Table 11 Comparison of the estimated reference points

from the CMSY method and from the Bayesian Schaefer

model, applied to 28 data-limited stocks. [CPUEStocks_

Results_6.xlsx].

Ratio Median
5th
percentile

95th
percentile

r CMSY/r BSM 1.06 0.75 1.17
k CMSY/k BSM 1.07 0.63 1.60
MSY CMSY/MSY BSM 1.05 0.70 1.68
Last B CMSY/last B BSM 1.37 0.62 7.84
Last B/k CMSY/last
observed B/k

1.26 0.51 12.8
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Other options for obtaining prior ranges for r

In the context of the Schaefer model, half of the

maximum intrinsic rate of population increase r

equals the rate of fishing mortality Fmsy that is

compatible with MSY (Ricker 1975). Fmsy itself is

closely related to the rate of natural mortality M

(Zhou et al. 2012; Froese et al. 2016a,b). Thus, if

estimates of Fmsy or M are available for other

stocks of the respective species, or such estimates

are available for similar species in the same area,

then these estimates can be used to determine

prior ranges for parameter r. Jensen (1996) sug-

gested an evolutionary relationship between natu-

ral mortality and the somatic growth parameter K,

such that K = 2/3 M. Kenchington (2014) exam-

ined 29 estimators of natural mortality and con-

cluded that M = 1.5 K or Pauly’s (1980)

empirical estimator based on growth parameters

and temperature or maximum age (tmax) with

M = 4.3/tmax can provide useful estimates. Gener-

ation time (tgen) is also a strong predictor for r

(Myers et al. 1999; Froese et al. 2000; McAllister

et al. 2001). FishBase (Froese and Pauly 2015)

has compiled mortality estimates for several hun-

dred species and maximum age and growth stud-

ies for several thousand species, including most

commercial species. These published parameter

estimates can be used to establish prior ranges for

r. Equation 12 summarizes the approximate rela-

tion between r and other life history parameters

that may be more easily available.

r � 2Fmsy � 2M � 3K � 3=tgen � 9=tmax ð12Þ

Using maximum catch for obtaining prior ranges for k

There is no simple predictor for the unexploited

size of a population because estimates of abun-

dance typically start well after fishing has substan-

tially reduced stock size. However, it is highly

unlikely that a fishery catches the whole stock in

a single year, and thus, it is safe to assume that

the maximum catch in a time series will be smal-

ler than the unexploited stock size k. Therefore,

maximum catch modulated by productivity was

used as a reference point for determining prior

ranges of k. It can be argued that catch data are

the main input of CMSY and that catch must

therefore be treated as unknown when establish-

ing priors (e.g. Kruschke 2011). However, the

prior knowledge used here is not the catch itself

but the knowledge that the unknown k must be

larger than the maximum catch and that

populations with high productivity can sustain lar-

ger maximum catches relative to k. For the wide

range of species and stocks examined in this study,

the prior range for k was suitable for CMSY and

BSM analyses and thus seems fit for general use.

Is the use of known stock status as prior for biomass

circular logic?

Broad estimates of relative biomass at the begin-

ning and the end of the time series of catches

are required inputs for CMSY. For the purpose of

this study, these prior biomass ranges were set

by default rules as low, medium or high

(Table 2). The default rules gave satisfactory

results in about 2/3 of the stocks. But in 34% of

the stocks, the prior for final biomass had to be

corrected to include, or nearly include, observed

abundance. Thus, one-third of the analyses pre-

sented in this study refer to a case where experts

had selected prior biomass ranges that were com-

patible with the true status of the stock. While

this may sound like circular logic, independent

knowledge about stock status often exists and its

inclusion in the analysis is then mandatory in a

Bayesian context (Gelman et al. 1995; Kruschke

2011).

For example, it is well-known that the North

Sea herring stock (Clupea harengus, Clupeidae, her-

47d3) was in reasonably good state in the 1950s,

collapsed in the 1970s and has recovered in

recent years. FishBase gives the resilience of this

species as medium. This very general information

combined with the time series of catches suffices

to produce CMSY estimates of r, k, MSY and tra-

jectories of biomass and exploitation that are simi-

lar to the respective estimates produced by BSM

and by regular stock assessment (Fig. 2).

Other examples of well-known stock status his-

tories are Georges Bank cod (Gadus morhua, Gadi-

dae, Cod_GB), which was overfished in the 1980s,

collapsed in the 1990s and has not recovered

since, or Arctic cod (Gadus morhua, Gadidae, cod-

arct), which was abundant in the early 1950s,

was near collapse in 1990 and recovered in recent

years.

Some preliminary testing of the sensitivity of

CMSY to incorrectly set prior biomass ranges was

carried out at the WKLIFE V workshop (ICES

2015). As expected, especially long time series

were able to recover from incorrectly set initial or

intermediate prior biomass ranges, but not from

incorrectly set final biomass ranges, because, by
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design, final biomass estimates outside the prior

range are discarded by the CMSY algorithm.

However, similar constraints also apply to many

data-limited and data-moderate assessments based

on conventional age-structured models (Ludwig

and Walters 1989; Mangel et al. 2013). Firstly, in

the absence of complete catch time series that date

back to the onset of the fishery, it is typically neces-

sary to enforce reasonable initial or current biomass

estimates through informative prior or penalties

(e.g. Punt and Hilborn 1997). Secondly, key param-

eters such as the natural mortality or the steepness

of the assumed spawner-recruitment relationship

are often fixed or heavily constrained, due to limited

information in the available data (Lee et al. 2011,

2012). This means that other important reference

points and thus the outcome of the assessment may

be determined a priori (Mangel et al. 2013). By com-

parison, CMSY admits broad uncertainty in resili-

ence and productivity and may therefore be more

robust to model misspecifications (Thorson et al.

2014). In summary, the inclusion of independent

knowledge about stock status is neither unique to

CMSY nor circular logic but mandatory in a Baye-

sian-type analysis. CMSY is most sensitive to incor-

rect setting of final prior biomass, but experts and

stakeholders for a given stock are likely to have rea-

sonably correct knowledge about current stock sta-

tus.

Data requirements of CMSY compared to other methods

In comparison with other methods proposed for

data-limited stock assessment, the requirements of

CMSY (catch, qualitative resilience and qualitative

stock status) appear modest. For example, the

DCAC method (MacCall 2009), which estimates a

sustainable catch-level below MSY, requires catch,

relative depletion, M and Fmsy/M as inputs. The

DB-SRA method (Dick and MacCall 2011), which

estimates biomass, MSY, Bmsy and exploitation

rate, requires catch, relative depletion, M, Fmsy/M,

Bmsy/B0 and age at maturity as inputs. The COM-

SIR method (Vasconcellos and Cochrane 2005),

which estimates stock status, production and

exploitation rates, requires catch, priors for r and

k, relative bioeconomic equilibrium and increase

in harvest rate over time as inputs. The SSCOM

method (Thorson et al. 2013), which predicts

stock status and productivity, requires catch, pri-

ors for unexploited biomass, initial effort and

parameters of an effort-dynamics model. Reviews

of these and other data-limited methods concluded

that the Catch-MSY method (Martell and Froese

2013), of which CMSY is an advanced implemen-

tation, performed best with respect to proportional

error in predictions (ICES 2014; Rosenberg et al.

2014).

Interpretation of the Schaefer equilibrium curve

CMSY and BSM as implemented here do not fit a

parabola to yield and biomass data, which requires

the assumption of equilibrium conditions, but

rather search for the r-k pair that best fits the time

series of available data and prior information. Plot-

ting catch and biomass data against an
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Figure 2 Results of CMSY analysis for North Sea herring (her-47d3). Panel (a) shows the biomass trajectory predicted

by CMSY in bold, together with the 2.5th and 97.5th percentiles. The dashed curve is the observed biomass, scaled by

k as estimated by BSM. The dotted vertical lines indicate the prior ranges for relative biomass. The dashed horizontal

line indicates Bmsy = 0.5 k and the dotted horizontal line indicates half Bmsy as the border below which recruitment

may be reduced. Panel (b) shows the relative exploitation rate u/umsy as estimated by CMSY in bold. The dashed curve

shows the observed ratio of catches over total biomass, scaled by 0.5 r as estimated by BSM. [CMSY_46eFig 2_2.R].
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equilibrium surplus production curve often looks

unconvincing and may lead to erroneous esti-

mates of MSY and Bmsy if the stock was not in a

state of equilibrium (Punt 2003). This is depicted

in Fig. 3a, which shows CMSY and BSM estimates

as well as ‘true’ data points for a simulated stock

of low resilience with increasing biomass. All

points fall below the equilibrium curve, because

catches were consistently less than surplus pro-

duction throughout the time series, which allowed

the stock to increase. Also, the non-overlap of the

CMSY estimates with the ‘true’ points and the

BSM estimates suggests that the CMSY fit for this

stock is not particularly good. By contrast, Fig. 3b

shows a simulated stock with high resilience and

a declining biomass pattern, including phases of

increase, decrease and equilibrium, as indicated by

the position of points below, above and near the

equilibrium curve, respectively. The overlap of

points suggests good agreement between CMSY

and BSM estimates and ‘true’ parameter values.

Production models with equilibrium curves of

different shapes have been proposed, but they all

share the same anchor points, because zero bio-

mass produces zero yield at the one end, and zero

yield results in unexploited biomass at the other

end. All models have an intermediate maximum

at similar absolute catch and biomass values, as

forced by the data (Sparre and Venema 1998; Fro-

ese et al. 2011; Thorson et al. 2012). Only the

estimation of unexploited biomass and therefore

the relative position of the biomass that can

produce MSY changes with the choice of the pro-

duction model, from 0.37 B/k with the Fox

(1970) model to 0.5 B/k with the Schaefer (1954)

model, and somewhere in between with the Pella

and Tomlinson (1969) model, depending on the

shape parameter of that model. The parabolas

shown in Fig. 3 are from a Schaefer model, repre-

senting surplus production derived from the first

derivative of the logistic model of population

growth. The Schaefer model has fewer assump-

tions and is more conservative than the other

models (it predicts lower equilibrium catch at low

biomass, see Figure A1 in the Supporting Informa-

tion of Froese et al. 2011) and was therefore cho-

sen for the implementation of CMSY in this study.

The indentation of the parabolas shown in Fig. 3

at stock sizes below 0.25 k results from the inclu-

sion of a stock–recruitment model which assumes

reduced recruitment at low stock sizes (see next

section).

Equilibrium conditions may arise when the

same catch is taken over an extended period of

time of at least one generation (Kawasaki 1980;

Caddy 1984). Thus, persistent deviations in the

annual points from the equilibrium curve are

more likely to be found in species with low resili-

ence and long generation time, such as in the sim-

ulated species with low resilience in Fig. 3a. In

contrast, a wide and more evenly distributed scat-

tering of points can be expected in species with

high resilience and short generation times, such as

simulated in Fig. 3b. In summary, while the
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Figure 3 CMSY output showing catch relative to MSY over biomass relative to unexploited stock size for two simulated

stocks. The open circles indicate true data, the black dots indicate estimates by BSM, and the grey dots indicate estimates

by CMSY. Panel (a) shows results for a simulated stock with increasing biomass and low resilience (see LH_L in

Appendix I of Data S1). Panel (b) shows results for a simulated stock with declining biomass for a species with high

resilience (see HL_H in Appendix I of Data S1). The indentation of the parabolas below 0.25 k (half of Bmsy) results from

the inclusion of a stock–recruitment model which assumes reduced recruitment at low stock sizes. [CMSY_46eFig 3_2.R].
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equilibrium curve is not suitable for parameter

estimation in most situations, it is still useful for

understanding the status of the stock and for com-

paring CMSY and BSM estimates.

Pragmatic combination of surplus production with

recruitment

Production models have been criticized for not tak-

ing into account the widely observed reduction in

recruitment at low population sizes. Instead, these

models assume an increase in the biomass growth

rate dB/dt as biomass approaches zero (Schnute

and Richards 2002). In earlier versions of CMSY,

this increase in productivity with decreases in bio-

mass led to an overestimation of final biomass in

depleted stocks (see respective warnings in ICES

2015, Annex 3). Schnute and Richards (2002)

propose to solve the general problem by combining

the production model with a recruitment function,

but their solution consists of eight interconnected

equations with more than eight additional param-

eters to be estimated. Here, we choose a much

simpler approach, assuming a generic stock–

recruitment function with constant recruitment

above 0.25 k and linear decline of recruitment

below that threshold, towards zero recruitment at

zero biomass. Such a hockey-stick model of

recruitment has been proposed by Barrowman and

Myers (2000), and a threshold around half of Bmsy

has been widely adopted as a limit reference point

for recruitment overfishing (Beddington and Cooke

1983; Myers et al. 1994; Punt et al. 2013; Car-

ruthers et al. 2014; Froese et al. 2016a,b). A

hockey-stick function is combined here with the

production model by introducing a multiplier

which decreases linearly from 1 to zero at biomass

below 0.25 k. This multiplier is assumed to reduce

the unknown component that recruitment pro-

vides to surplus production (Equation 2). This new

‘surplus production and recruitment’ model is used

in CMSY and BSM and gives more realistic esti-

mates of r and k in stocks with extended periods of

severely depleted biomass. It also removes the bias

in CMSY estimates of final biomass in severely

depleted stocks (see YTFlo_MA and her-3a22 in

Fig. 4, with reasonable predictions of final biomass

despite severe depletion). Note that the reduction
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Figure 4 CMSY predictions of relative biomass B/k (bold curve) with 2.5th and 95th percentiles (thin curves)

compared to observed biomass (dashed curve) scaled by the respective BSM estimate for k for (a) North Atlantic

swordfish (Swordfish_NA), (b) Arctic cod (cod-arct), (c) Northwest Atlantic yellow tail flounder (Limanda ferruginea,

Pleuronectidae, YTFLo_MA) and (d) Western Baltic herring (Clupea harengus, Clupeidae, her-3a22). The horizontal lines

emphasize Bmsy = 0.5 k and 0.5 Bmsy = 0.25 k. The dotted vertical lines indicate the prior estimates of biomass.

[CMSY_46eFig 4_2.R].
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in recruitment at very low stock sizes (B/k < 0.25)

also means that Fmsy = ½ r is not applicable any-

more and instead Fmsy B/k = ½ r 4 B/k should be

used for management advise.

Performance of the Bayesian Schaefer model

Dynamic production models, such as the imple-

mentation of the Schaefer model used in this

study, require time series of catch and abun-

dance as inputs and thus do not count as data-

limited methods. However, as CMSY is a simpli-

fied Bayesian implementation of a data-limited

production model, it seems appropriate to com-

pare CMSY results with the results of a full

Bayesian implementation of a surplus production

estimation model, rather than with results

obtained from various stock assessment methods

with different assumptions and often unavailable

levels of uncertainty. The Bayesian Schaefer

model applied in this study (BSM) is similar to

previous implementations (e.g. Meyer and Millar

1999; McAllister et al. 2001; Vasconcellos and

Cochrane 2005; Thorson et al. 2013), but differs

in its emphasis on informative priors for k, based

on maximum catch modulated by productivity,

for q, based on equilibrium catch, for r, based

on more complex modelling of the distribution of

r, and for relative biomass ranges, based on

default rules or expert opinion. A state-space

model implementation was chosen because expli-

cit modelling of process error and observation

error has been shown to result in more realistic

posterior distributions of parameters (Ono et al.

2012). The resulting predictions for r, k and

MSY were close to the ‘true’ values of the simu-

lated data sets and r/2 was reasonably close to

working group estimates of Fmsy in 82% of the

stocks with available data (Data S1).

In summary, BSM performed well when com-

pared with ‘true’ values of simulated stocks. It

could be fitted to all real stocks with at least

9 years of abundance data and produced parame-

ter estimates that were comparable with available

working group estimates. Thus, the BSM parame-

ter estimates were chosen as benchmarks for the

evaluation of CMSY when applied to real stocks

where true parameter values are unknown. Of

course, like any production model, BSM will pro-

vide unrealistic results if one or more of its key

assumptions are violated, caused, for example, by

environmental regime shifts, dramatic changes in

the productivity or size-structure of the stock, or

major changes in catchability. Also, in stocks that

are lightly exploited such as the simulations end-

ing in high biomass, the interplay between catch

and biomass contains less information about pro-

ductivity and estimates of r will be less reliable

(Table 4).

Understanding the CMSY triangle

The typical triangular shape of viable r-k points in

log-space (Fig. 1) has a biological basis. The given

time series of catches may have been produced

either by a large population with low to medium

productivity or by a small population with high

productivity. This relation is reflected by the well-

defined lower bound of the r-k triangle, which rep-

resents for a given r the lowest k that is compati-

ble with the catches and the biomass priors. The

slope of this lower border is typically a bit flatter

than the slope (�1) of the line of r-k pairs result-

ing in the same value of MSY (Equation 5). The

upper border of the r-k triangle is typically more

diffuse, marking the highest k-values which, if

combined with the corresponding r, will not result

in a predicted biomass exceeding the upper prior

biomass ranges. Because a large population can

support a wide range of modest catch patterns

even with low or medium productivity, more

viable r-k pairs are found in the upper left low-r-

high-k corner of the log r-k space. In contrast,

while a small population may be able to support

high catches if it has high productivity, such

catches will take a large proportion of the popula-

tion resulting in strong interannual fluctuations

which are prone to falling outside the theoretical

and prior biomass ranges. As a result, few or no

viable r-k pairs are found in the lower right high-r-

low-k corner of the log r-k space. As a general

rule, CMSY will find more viable r-k pairs in stocks

where catches take a small fraction of available

biomass, and vice versa. In summary, the CMSY

triangle is the result of the Monte Carlo filtering

process within a fixed r-k space and with hard

prior bounds for biomass. The tip of the triangle

typically transverses the expected ellipsoid cloud of

viable r-k pairs found by BSM from catch and

abundance data. The beauty of CMSY is that it

finds this area without knowledge of abundance,

albeit with a non-representative distribution. Over-

coming the problems created by this triangular

rather than ellipsoid distribution is the main
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achievement of CMSY compared with the Catch-

MSY method of Martell and Froese (2013).

Performance of CMSY

Given the limited requirement of input data con-

sisting of catch, qualitative resilience and qualita-

tive stock status, the predictions of CMSY are

surprisingly accurate when validated with ‘true’

values of simulated stocks or evaluated against

BSM estimates for real stocks. While not every

fluctuation of simulated or observed stock abun-

dance is traced, the overall patterns of stock devel-

opment and exploitation are usually reproduced,

as shown in Fig. 4 for North Atlantic swordfish

(Xiphias gladius, Xiphiidae, Swordfish_NA) and

Arctic cod (cod-arct). A preliminary analysis sug-

gests that CMSY will underestimate MSY and k if

landings instead of catch data are used and dis-

cards are substantial. However, even with landings

data, the estimates of r and relative biomass B/k

seem to correctly reflect the productivity and the

status of the stock (ICES 2014).

Using CMSY for management of data-limited

stocks

The predictions of CMSY can be presented in a for-

mat useful for stock assessment and management

of data-limited stocks (Appendix IV in Data S1). In

the example of Baltic brill (Scophthalmus rhombus,

Scophthalmidae, bll-2232) (Fig. 5), catches

exceeded MSY in 1995 and from 2008 to 2010,

but exploitation was below the MSY-level in recent

years. Highly variable CPUE data are available

from 2001 onward. Both CMSY and BSM predict

biomass between half Bmsy and Bmsy in recent

years. This information is summarized in a stock

status graph, showing the development of the

stock from the high-exploitation-low-biomass
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Figure 5 Summary of information relevant for management of Baltic brill (bll-2232). The horizontal dashed line (a)

indicates MSY, and the dotted line indicates the lower confidence limit of MSY. The bold curve in (b) is the biomass

predicted by CMSY, with confidence limits (dotted curves). The normal curve indicates CPUE scaled by the catchability

coefficient estimated by BSM. The horizontal dashed line indicates Bmsy and the dotted line indicates half of Bmsy. Panel

(c) shows catch over biomass predicted by CMSY (bold curve) and catch over CPUE (normal curve) scaled by

catchability q estimated by BSM. The dashed horizontal line indicates exploitation compatible with MSY. Panel (d)

shows the development of biomass and exploitation relative to Bmsy (horizontal dashed line) and umsy (vertical dashed

line), respectively. The horizontal dotted line indicates the biomass (0.5 Bmsy) below which recruitment may be

impaired, and the rhomb indicates the final year in the time series. The bold curve refers to CMSY and the normal

curve to BSM estimates. [CMSY_46eFig 5-6_2.R].

522 © 2016 John Wiley & Sons Ltd, F I SH and F I SHER IES , 18, 506–526

Reference points from catch and resilience R Froese et al.



danger zone in the lower right quadrant of the

graph towards the recovery zone in the upper half

of the lower left quadrant. If the goal is stock

recovery with better future yields, the manage-

ment advice from this analysis is straightforward:

maintain catches at their current low level until

both CMSY and BSM predict biomass above Bmsy

for two to 3 years in a row and then increase

catches to the lower confidence limit of MSY.

Management advice is less clear for the data-

limited stock of blond ray in ICES Division IXa

(Raja brachyura, Rajidae, rjh-pore) (Fig. 6), where

CPUE data are only available from 2008 to 2014,

too few for BSM analysis. CMSY predicts that

catches were near MSY until 2005 and dropped

to below half of MSY thereafter. Biomass recovers

towards Bmsy in 2014; however, there is a wide

margin of uncertainty around that prediction.

CPUE data show little change in biomass from

2008 to 2013 but confirm a drop in exploitation

rate. Precautionary management may restrict

catches at current levels until additional CPUE

data allow for a BSM analysis and confirm a

recovery to Bmsy. At that point, the lower 95%

confidence limit of MSY can serve as guidance for

allowed catches.

If no CPUE data are available, other indicators

can be used to confirm the predictions of CMSY

analysis before they are used to inform manage-

ment. For example, mean length in the catch rela-

tive to length at first maturity and relative to

length at maximum cohort biomass can be used

to derive independent evidence of stock status

(ICES 2014, 2015; Jardim et al. 2014; Froese et al.

2015).

Given the renewed interest in the MSY concept,

it may be worthwhile to repeat the following

warning of the Food and Agriculture Organization

of the United Nations (FAO), given at an expert

consultation on the regulation of fishing effort in

Rome, 17–26 January 1983: ‘Attempts to tune a

system for attainment of maximum output (MSY)

will lead to oscillation, unpredictability and,

because of the inertia of the socio-economic sys-

tem, eventually to crashes (whether reversible or

not). A lower level of output is safer and more pre-

dictable’ (Caddy 1984). This warning is confirmed

by the recent exploitation history of the 128 fully

assessed stocks examined in this study: maximum

catches had exceeded MSY in 92% of the stocks,

resulting in recent biomass below the level that

can produce MSY in 58% and potentially reduced
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Figure 6 Summary of information relevant for management of blond ray in the Northeast Atlantic (ICES area IXa).

See Fig. 5 for general explanation of graphs (a–d). Note that CMSY curves are in bold. CPUE and catch over CPUE are

plotted against their own axes in (b) relative biomass and (c) exploitation rate because the time series was too short for

BSM analysis. [CMSY_46eFig 5_6_2.R].
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recruitment (B/k < 0.25) in 20% of these stocks.

Four stocks (3%) were severely depleted (B/

k < 0.1). In contrast, all of the 10 stocks where

exploitation was kept below MSY had recent bio-

mass levels above the one that can produce MSY,

as predicted by the expert consultation in 1983

(Caddy 1984).

Conclusions

This study presents a Monte Carlo method (CMSY)

for estimating fisheries reference points from catch,

resilience and qualitative stock status in data-lim-

ited stocks. It also presents a new Bayesian state-

space implementation of the Schaefer production

model (BSM), fitted to catch and biomass or CPUE.

Both methods consider reduced recruitment and

thus reduced productivity at low stock sizes and

gave good predictions of r, k and MSY when vali-

dated against simulated data. CMSY provides, in

addition, reasonable predictions of relative biomass

and exploitation rate when compared with ‘true’

simulated data. Both models were also evaluated

against 128 real stocks, where estimates of bio-

mass were available from full stock assessments.

BSM estimates of r, k and MSY were used as

benchmarks for the respective CMSY estimates.

These estimates were not significantly different in

76% of the stocks. A similar test against 28 data-

limited stocks, where CPUE instead of biomass

was available, shows that BSM and CMSY esti-

mates were not significantly different in 89% of

the stocks. Examples for using CMSY in the man-

agement of data-limited stocks are given.
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