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Abstract. In the present paper, we study hemi-slant submanifolds of a locally
conformal Kähler manifold. We give conditions for the integrability of anti-
invariant and slant distributions which are involved in the definition of hemi-

slant submanifold. We also get necessary and sufficient conditions for these
distributions to define totally geodesic foliations. The paper ends with some
results for hemi-slant submanifolds with parallel canonical structures.

1. Introduction

Study of slant submanifolds was initiated by B.Y. Chen [4], as a generalization
of both holomorphic and totally real submanifolds of a Kähler manifold. Slant
submanifolds have been studied in different kinds of structures of both almost
Hermitian and almost contact manifolds by several geometers. N. Papaghiuc [6]
introduced semi-slant submanifolds of a Kähler manifold as a natural generalization
of slant submanifold. These types of submanifolds have been studied in different
types of structures, for example, see [7] and [12]. On the other hand , A. Carriazo
[2], introduced the notion of bi-slant submanifold as a generalization of a semi-
slant submanifold. One of the classes of bi-slant submanifolds is that of anti-slant
submanifolds which are studied by A. Carriazo [2], but B. Şahin [9] named these
submanifolds as hemi-slant submanifolds because of that the name anti-slant seems
to refer that they have no slant factor. It is also seen that a hemi-slant submanifold
is a special case of generic submanifold which was introduced by G.S. Ronsse [8].
Since then many geometers have studied hemi-slant submanifolds in different kinds
of structures. For example, see [1] and [13]. In the present paper, we study hemi-
slant submanifolds of a locally conformal Kähler manifold.

The paper is organized as follows. Section 2 is devoted to preliminaries. Actually,
in subsection 2.1 we present the basic background needed for a locally conformal
Kähler manifold. Theory of submanifolds and distributions needed for the study are
placed in subsection 2.2. In subsection 2.3, we define hemi-slant submanifolds and
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observe their effect to the tangent bundle of the submanifold and canonical projec-
tion operators. We begin to study hemi-slant submanifolds of a locally conformal
Kähler manifold in section 3. Integrability of anti-invariant and slant distributions
of the hemi-slant submanifold are studied in this section. We also give necessary
and sufficient conditions for these distributions to define totally geodesic foliations
in section 3. The last section deals with parallelism of the canonical projection
structures on the tangent bundle of the hemi-slant submanifold.

2. Preliminaries

2.1. Some background for a locally conformal Kähler manifold. A smooth
manifold M̄ is called almost Hermitian [15] if its tangent bundle has an almost
complex structure J and a Riemannian metric g such that

(2.1) g(Ū , V̄ ) = g(JŪ, JV̄ )

for any vector fields Ū , V̄ ∈ TM̄ , where TM̄ is the tangent bundle of M̄ . The mani-
fold (M̄, g, J) is called a locally conformal Kähler manifold (briefly l.c.K. manifold),
if every point of M̄ has a neighborhood U such that the restriction g|U of g to U
is conformal to a Kähler metric g′U of U : g′U = e−σg|U for some C∞-function
σ : U → R. (M̄, g) is a globally conformal Kähler manifold (briefly g.c.K. manifold)
if one can choose U = M̄ ; then g′ is a Kähler metric on M̄ , and hence (M̄, g′) is a
Kähler manifold.

Let Ω be 2-form on M̄ . Then M̄ is a l.c.K. manifold if and only if there is a
global 1-form ω on M̄ (the Lee form of M̄) such that [14]

dΩ = ω ∧ Ω, dω = 0

and M̄ is a g.c.K. manifold if ω is also exact. For a l.c.K. manifold the Lee vector
field B is given by

(2.2) g(B, Ū) = ω(Ū)

for any vector field Ū on M̄ . We denote by ∇̃ (resp. ∇̄) is the Riemannian connec-
tion of e−σg|U (resp. g). Then we have [14]

(2.3) ∇̃Ū V̄ = ∇̄Ū V̄ − 1

2
{ω(Ū)V̄ + ω(V̄ )Ū − g(Ū , V̄ )B}

for any vector fields Ū , V̄ on M̄. The connection ∇̃ is a torsionless linear connection
on M̄ which is called the Weyl connection of g. It is easy to see that the Weyl
connection ∇̃ satisfies the condition

(2.4) ∇̃J = 0.

For more details on l.c.K. manifolds we refer to [5].

2.2. Submanifolds. Let M be a submanifold of a Riemannian manifold M̄ with
a Riemannian metric g. Then Gauss and Weingarten formulas with respect to ∇̄
are given respectively by

(2.5) ∇̄UV = ∇UV + h(U, V )

and

(2.6) ∇̄Uξ = −AξU +∇⊥
Uξ
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for all U, V ∈ TM and ξ ∈ T⊥M , where and ∇ and ∇⊥ are respectively the
induced Riemannian, and induced normal connection with respect to ∇̄ in M and
the normal bundle T⊥M of M and h is the second fundamental form related to
shape operator A corresponding to the normal vector field ξ by

(2.7) g(h(U, V ), ξ) = g(AξU, V ) .

A submanifold M is said to be totally geodesic if its second fundamental form
vanishes identically, that is, h = 0, or equivalently Aξ = 0. We say that M is totally
umbilical submanifold in M̄ if for all U, V ∈ TM we have

(2.8) h(U, V ) = g(U, V )H ,

where H is the mean curvature vector field of M in M̄ .

Let M be a submanifold of an almost Hermitian manifold (M̄, g, J). For any
U ∈ TM we write

(2.9) JU = PU + FU ,

where PU is the tangential part of JU, and FU is the normal part of JU. Similarly,
for any ξ ∈ T⊥M , we put

(2.10) Jξ = tξ + fξ ,

where tξ is the tangential part of Jξ, and fξ is the normal part of Jξ.

A distribution D on a manifold M̄ is called autoparallel if ∇XY ∈ D for any
X,Y ∈ D and called parallel if ∇̄UX ∈ D for any X ∈ D and U ∈ TM̄. If a distri-
bution D on M̄ is autoparallel, then it is clearly integrable, and by Gauss formula
D is totally geodesic in M̄ . If D is parallel then the orthogonal complementary
distribution D⊥ is also parallel, which implies that D is parallel if and only if D⊥

is parallel. In this case M̄ is locally product of the leaves of D and D⊥. For two
distributions D1 and D2 on a submanifold M of M̄ , we say that M is (D1,D2)-
mixed totally geodesic, if for all X ∈ D1 and Y ∈ D2 we have h(X,Y ) = 0, where
h is the second fundamental form of M [11, 15].

2.3. Hemi-slant submanifolds of an almost Hermitian manifold. Let M
be a submanifold of M̄ . A distribution D on M is said to be a slant distribution
if for X ∈ Dp, the angle θ between JX and Dp is constant, i.e., independent of
p ∈ M and X ∈ Dp. The constant angle θ is called the slant angle of the slant
distribution D. It is well-known that holomorphic and totally real distributions
on M are slant distributions with θ = 0 and θ = π

2 , respectively. A submanifold

M of M̄ is said to be a slant submanifold if the tangent bundle TM of M is slant [4].

A hemi-slant submanifold [2, 9] M of an almost Hermitian manifold M̄ is a sub-
manifold which admits two orthogonal complementary distributions D⊥ and Dθ

such that

(a) TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ

(b) The distribution D⊥ is anti-invariant, i.e., JD⊥ ⊆ T⊥M.
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(c) The distribution Dθ is slant with slant angle θ.

We say that the hemi-slant submanifold M is proper if d ̸= 0 and θ ̸= 0, π
2 , where

d denotes the dimension of D⊥. In this case, we have

(2.11) P 2Z = − cos2θZ ,

(2.12) g(PZ,PW ) = cos2θg(Z,W )

and

(2.13) g(FZ,FW ) = sin2θg(Z,W )

for any Z,W ∈ Dθ [9].

Lemma 2.1. Let M be a proper hemi-slant submanifold of an almost Hermitian
manifold M̄. Then we have,

(2.14) JD⊥ ⊥ FDθ .

Proof. For any X ∈ D⊥ and Z ∈ Dθ, using (2.1) and (2.9), we have
g(JX,FZ) = g(JX, JZ) = g(X,Z) = 0. This completes the proof. �

In view of Lemma 2.1, for a hemi-slant submanifold M of a l.p.R. manifold M̄,
the normal bundle T⊥M of M is decomposed as

(2.15) T⊥M = FDθ ⊕ JD⊥ ⊕ µ ,

where µ is the orthogonal complementary distribution of FDθ ⊕JD⊥ in T⊥M and
it is invariant subbundle of T⊥M with respect to J. Using (2.9), (2.10) and the fact
that J2 = −I, we have the following facts.

(2.16)
(a) P 2 + tF = −I, (b) f2 + Ft = −I,
(c) FP + fF = 0, (d) tf + Pt = 0.

Lemma 2.2. Let M be a proper hemi-slant submanifold of an almost Hermitian
manifold M̄. Then we have,

(2.17) (a) PD⊥ = {0}, (b) PDθ = Dθ .

Proof. Since D⊥ is anti-invariant with respect to J , (a) follows from (2.9). For
any Z ∈ Dθ and X ∈ D⊥, using (2.1) and (2.9), we have g(PZ,X) = g(JZ,X) =
g(Z, JX) = 0. Hence, we conclude that PDθ ⊥ D⊥. Since PDθ ⊆ TM , it follows
that PDθ ⊆ Dθ. LetW be in Dθ. Then using (2.11), we haveW = 1

cos2θ (cos
2θW ) =

−1
cos2θP

2W = −1
cos2θP (PW ). So, we find W ∈ PDθ. It follows that Dθ ⊆ PDθ. Thus,

we get the assertion (b). �

3. Hemi-slant submanifolds of a locally conformal Kähler manifold

Let M be a (proper) hemi-slant submanifold of a l.c.K. manifold M̄ with anti-
invariant distribution D⊥ and slant distribution Dθ. For the Lee vector field B of
M̄ , we put

(3.1) B = BT +BN (along M) ,

where BT and BN are respectively tangential and normal part of B.

First, we give an example.
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Example 3.1. Consider the almost Hermitian manifold (R6\{0}, g, J),

where g = λ−1(dx2
1 + ...+ dx2

6), (λ = x2
1 + ...+ x2

6) is a Riemannian metric and
the almost complex structure J defined by

J∂1 = ∂2, J∂2 = −∂1, ..., J∂5 = ∂6, J∂6 = −∂5.

Finally, consider on R6\{0}, the Riemannian metric g̃ = λg. Then it is easy
to see that (R6\{0}, g̃, J) is a Kähler manifold. So, (R6\{0}, g, J) is a globally
conformal Kähler manifold with the Lee form

ω = −2λ−1(x1dx1 + ...+ x6dx6) .

Consequently, the Lee vector field

B = −2λ−1(x1∂1 + ...+ x6∂6) .

Now, let M be a submanifold of (R6\{0}, g, J) defined by

f(u, v, w) = (
u√
2
cos v,

u√
2
sin v,

u√
2
, 0, w, 0)

where u,w ̸= 0. Then, a local frame of TM is given by

Z =
1√
2
(cos v∂1 + sin v∂2 + ∂3),

W =
u√
2
(− sin v∂1 + cos v∂2),

X = ∂5.

By using the almost complex structure J and the Riemannian metric g above, we
see that JX is orthogonal to TM , thus D⊥ = span{X}. Moreover, it is not difficult
to see that Dθ = span{Z,W} is a slant distribution with slant angle θ = π/4 .
Thus, M is a proper hemi-slant submanifold of (R6\{0}, g, J).

Now, we study the integrability of anti-invariant distribution D⊥ and slant dis-
tribution Dθ.

Lemma 3.1. Let M be any submanifold of a l.c.K. manifold M̄. Then we have

(3.2)
∇UPV −AFV U − 1

2ω(JV )U + 1
2g(U,PV )BT

= P∇UV + th(U, V )− 1
2ω(V )PU + 1

2g(U, V )(PBT + tBN )

and

(3.3)
∇⊥

UFV + h(U,PV ) + 1
2g(U,PV )BN

= F∇UV + fh(U, V )− 1
2ω(V )FU + 1

2g(U, V )(FBT + fBN )

for any U, V ∈ TM.

Proof. Substituting V by JV in (2.4) and using (2.9) and (2.5) we obtain

(3.4)

∇UPV + h(U,PV ) +∇⊥
UFV −AFV U

− 1
2ω(U)JV − 1

2ω(JV )U + 1
2g(U, JV )B

= P∇UV + F∇UV + th(U, V ) + fh(U, V )
− 1

2ω(U)JV − 1
2ω(V )JU + 1

2g(U, V )JB
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Thus, (3.2) and (3.3) follow from (3.4) by using (2.10), (2.11) and identifying the
components from TM and T⊥M. �

Proposition 3.1. Let M be a hemi-slant submanifold of a l.c.K. manifold M̄. Then
the anti-invariant distribution D⊥ is integrable if and only if

(3.5) AFXY + 1
2ω(FX)Y = AFY X + 1

2ω(FY )X

for any X,Y ∈ D⊥.

Proof. Let X,Y be in D⊥. Then using (2.17)-(a), we have

(3.6) −AFY X − 1
2ω(FY )X = P∇XY + th(X,Y ) + 1

2g(X,Y )(PBT + tBN )

from (3.2). Since h and g are symmetric (0,2)-type of tensor fields, it follows from
(3.6) that

(3.7) P [X,Y ] = AFXY −AFY X + 1
2{ω(FX)Y − ω(FY )X} .

With the help of (2.17)-(a), we see that D⊥ is integrable if and only if P [X,Y ] = 0
for X,Y ∈ D⊥. So, our assertion follows easily from (3.7). �

Proposition 3.2. Let M be a hemi-slant submanifold of a l.c.K. manifold M̄. Then
the slant distribution Dθ is integrable if and only if

(3.8) ∇ZPW −∇WPZ +AFZW −AFWZ + g(Z,PW )BT ∈ Dθ

for any Z,W ∈ Dθ.

Proof. The slant distribution Dθ is integrable if and only if [Z,W ] ∈ Dθ, for any
Z,W ∈ Dθ. On the other hand [Z,W ] ∈ Dθ if and only if P [Z,W ] ∈ Dθ, because
of (2.17)-(b) and the fact that TM = D⊥ ⊕Dθ. For any Z,W ∈ Dθ, using (2.10),
we have

(3.9)
∇ZPW −AFWZ − 1

2ω(JW )Z + 1
2g(Z,PW )BT

= P∇ZW + th(Z,W )− 1
2ω(W )PZ + 1

2g(Z,W )(PBT + tBN )

from (3.2). Since h and g are symmetric (0,2)-type of tensor fields, it follows from
(3.9) that

(3.10)
P [Z,W ] = ∇ZPW −∇WPZ +AFZW −AFWZ + g(Z,PW )BT

−1
2ω(JW )Z + 1

2ω(JZ)W + 1
2ω(W )PZ − 1

2ω(Z)PW.

Using (2.17)-(b) from (3.10), we find P [Z,W ] ∈ Dθ if and only if (3.8) holds. �

We also proved the Lemma 3.1 and Proposition 3.2 for semi-slant submanifolds
of a l.c.K. manifold in [12].

Let M be a hemi-slant submanifold of a l.c.K. manifold M̄. Then Gauss and
Weingarten formulas with respect to ∇̃ are given respectively by

(3.11) ∇̃UV = ∇̂UV + h̃(U, V ) ,

and

(3.12) ∇̃Uξ = −ÃξU + ∇̃⊥
Uξ

for all U, V ∈ TM and ξ ∈ T⊥M , where ∇̂ and ∇̃⊥ are respectively the induced
Riemannian and induced normal connection with respect to ∇̃ in M and the normal
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bundle T⊥M of M , and h̃ is the second fundamental form of M with respect to ∇̃.
Moreover, the second fundamental form h̃ is related to the shape operator Ã by

(3.13) g(h̃(U, V ), ξ) = g(ÃξU, V ) .

Using (2.5), (2.6), (3.11) and (3.12) from (2.3) we have the following lemma.

Lemma 3.2. Let M be a hemi-slant submanifold of a l.c.K. manifold M̄. Then we
have

(3.14) ∇̂UV = ∇UV − 1
2{ω(U)V + ω(V )U − g(U, V )BT } ,

(3.15) h̃(U, V ) = h(U, V ) + 1
2g(U, V )BN ,

(3.16) ÃξU = AξU + 1
2ω(ξ)U ,

(3.17) ∇̃⊥
Uξ = ∇⊥

Uξ − 1
2ω(U)ξ ,

for any U, V ∈ TM and ξ ∈ T⊥M .

We remark that Lemma 3.2 was also given as Lemma 2.1 in ([10]) for generic
submanifolds (in the sense of Chen [3]) of a l.c.K. manifold.

From Proposition 3.1 and (3.16), we have the following result.

Corollary 3.1. Let M be a proper hemi-slant submanifold of a l.c.K. manifold M̄.
Then the anti-invariant distribution D⊥ is integrable if and only if

(3.18) ÃFXY = ÃFY X

for any X,Y ∈ D⊥.

Lemma 3.3. Let M be a hemi-slant submanifold of a l.c.K. manifold M̄. Then we
have

(3.19) −P (∇̂UX) = ÃFXU + th̃(U,X)

for any X ∈ D⊥ and U ∈ TM .

Proof. From (2.5), we have ∇̃UJX = J∇̃UX for any X ∈ D⊥ and U ∈ TM . Using
(2.17)-(a) and (3.11), we obtain

∇̃UFX = J(∇̂UX) + Jh̃(U,X) .

Hence, it follows that

−ÃFXU + ∇̃⊥
UFX = P (∇̂UX) + F (∇̂UX) + th̃(U,X) + fh̃(U,X) .

Taking the tangential part of this equation we find (3.19). �

Theorem 3.1. Let M be a proper hemi-slant submanifold of a l.c.K. manifold M̄.
Then the anti-invariant distribution D⊥ is integrable.

Proof. With the help of (2.17)-(a) and (2.17)-(b), for any X,Y ∈ D⊥ and U ∈ TM,
we have

0 = g(−P (∇̂UX), Y ) = g(ÃFXU, Y ) + g(th̃(U,X), Y ) from Lemma 3.3. After

some calculation, we find g(ÃFXY, U) = g(ÃFY X,U). It follows that ÃFXY =

ÃFY X. Thus our assertion follows from Corollary 3.1. �



HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD 53

Next, we are going to study the problem when a proper hemi-slant of submanifold
of a l.c.K. manifold is a Riemannian product of a totally real submanifold and a
slant submanifold.

Theorem 3.2. Let M be a proper hemi-slant submanifold of a l.c.K. manifold M̄.
Then the slant distribution Dθ defines a totally geodesic foliation on M if and only
if

(3.20) g(AFXW + 1
2ω(FX)W,Z) = g(AFWX,Z)

for all Z,W ∈ Dθ and X ∈ D⊥.

Proof. We know that (M̄, g′, J) is a Kähler manifold. Thus, from Theorem 3.7 [9],
we have the distribution Dθ defines a totally geodesic foliation on M if and only if

g′(ÃFXPW,Z) = g′(ÃFPWX,Z)

for all Z,W ∈ Dθ and X ∈ D⊥. Putting W = PW in this equation and using
(2.11), we get

(3.21) g′(ÃFXW,Z) = g′(ÃFWX,Z) .

Thus, our assertion follows from (3.16), (3.21) and the fact that g(X,Z) = 0. �

Theorem 3.3. Let M be a proper hemi-slant submanifold of a l.c.K. manifold M̄.
Then the anti-invariant distribution D⊥ defines a totally geodesic foliation on M if
and only if

(3.22) g(AFXZ, Y ) = g(AFZX + 1
2ω(FZ)X,Y )

for all X,Y ∈ D⊥ and Z ∈ Dθ.

Proof. Since (M̄, g′, J) is a Kähler manifold, it follows from Theorem 3.8 [9] that
the distribution D⊥ defines a totally geodesic foliation on M if and only if

g′(ÃFXPZ, Y ) = g′(ÃFPZX,Y )

for all X,Y ∈ D⊥ and Z ∈ Dθ. Putting Z = PZ in this equation and using (2.11),
we get

(3.23) g′(ÃFXZ, Y ) = g′(ÃFZX,Y ) .

Thus, our assertion follows from (3.16), (3.23) and the fact that g(Y,Z) = 0. �

Corollary 3.2. Let M be a proper hemi-slant submanifold of a l.c.K. manifold M̄.
Then M is a locally Riemannian product manifold M = MD⊥ ×MDθ if and only if

(3.24) AFXZ + 1
2ω(FX)Z = AFZX + 1

2ω(FZ)X

for X ∈ D⊥ and Z ∈ Dθ, where MD⊥ is a totally real and MDθ is a slant subman-
ifold of M̄.

Proof. It follows easily from (3.21), (3.23) and (3.16). �
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4. Hemi-slant submanifolds with parallel canonical structures

In this section, we study hemi-slant submanifolds of a l.c.K. manifold with par-
allel canonical projection structures on the tangent bundle of the submanifold.

Let M be a submanifold of a l.c.K. manifold M̄ . For the endomorphism P :
TM → TM we put

(4.1) (∇̃UP )V = ∇̂UPV − P ∇̂UV

for any U, V ∈ TM . We say that P is parallel if (∇̃UP ) = 0 for any U ∈ TM. From
(2.5), (3.11) and (3.12), we have

(4.2)
∇̂UPV + h̃(U,PV )− ÃFV U + ∇̃⊥

UFV

= P ∇̂UV + F ∇̂UV + th̃(U, V ) + fh̃(U, V )

Hence, we obtain

(∇̃UP )V = th̃(U, V ) + ÃFV U.

Thus, for any U, V,W ∈ TM , we get

(4.3) g((∇̃UP )V,W ) = g(ÃFV W − ÃFWV,U) .

Proposition 4.1. Let M be a submanifold of a l.c.K. manifold M̄. Then P is
parallel if and only if

AFUV −AFV U =
1

2
{ω(FV )U − ω(FU)V }

for any U, V ∈ TM.

Proof. It follows immediately from (3.16) and (4.2). �

Theorem 4.1. Let M be a hemi-slant submanifold of a l.c.K. manifold M̄. Then
P is parallel, i.e., ∇̃P ≡ 0, if and only if the anti-invariant distribution D⊥ is
autoparallel.

Proof. Let P be parallel. For any X,Y ∈ D⊥, using (2.17)-(a), we have

(4.4) 0 = (∇̃XP )Y = P ∇̂XY

from (4.1). Again, using (2.17)-(a), we deduce that ∇̂XY ∈ D⊥ from (4.4). It
means that D⊥ is autoparallel. Converse is clear. �

Now, we give a characterization theorem for totally umbilical hemi-slant sub-
manifolds of a l.c.K. manifold.

Theorem 4.2. Let M be a totally umbilical hemi-slant submanifold of a l.c.K.
manifold M̄. If P is parallel and dim(D⊥) ≥ 2, then the mean curvature vector

field H̃ of M belongs to distribution µ.

Proof. Since dim(Dθ) ≥ 2, we choose Z,W ∈ Dθ such that g(Z,W ) = 0 and
∥Z∥ = 1. Then, using (2.4) and (3.13), we have

g(H̃, FW ) = g(h̃(Z,Z), FW ) = g(ÃFWZ,Z).

Here, from Lemma 3.5 of [4, p.23], we know that ÃFWZ = ÃFZW . Thus, we get
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g(H̃, FW ) = g(ÃFZW,Z) = g(h̃(Z,W ), FZ) = 0. It means that

(4.5) H̃ ⊥ FDθ .

On the other hand, we can choose X,Y ∈ D⊥ such that g(X,Y ) = 0 and ∥Y ∥ = 1
from the hypothesis. Again, using (2.5) and (3.13), we have

g(H̃, FX) = g(h̃(Y, Y ), FX) = g(ÃFXY, Y ). Here, by Theorem 4.1 and Corol-

lary 3.1, we know that ÃFXY = ÃFY X. So, we get

g(H̃, FX) = g(ÃFY X,Y ) = g(h̃(X,Y ), FY ) = 0. It follows that

(4.6) H̃ ⊥ FD⊥ .

Thus, our assertion follows from (4.5), (4.6) and (2.15). �
For the normal-bundle 1-form F , we put

(4.7) (∇̃UF )V = ∇̃⊥
UFV − F ∇̂UV .

for any U, V ∈ TM . We say that F is parallel if (∇̃UF ) = 0 for any U ∈ TM. By
using (3.11) and (3.12), for any U, V ∈ TM , we have

(4.8) (∇̃UF )V = fh̃(U, V )− h̃(U,PV )

from (4.7). Hence, for any ξ ∈ T⊥M , we obtain

(4.9) g(∇̃UF )V, ξ) = −g(ÃfξV + ÃξPV,U) .

for any U, V ∈ TM and ξ ∈ T⊥M .

Proposition 4.2. Let M be a submanifold of a l.c.K. manifold M̄. Then F is
parallel if and only if

AfξU +AξPU = −1

2
{ω(fξ)U + ω(ξ)PU}

for any U ∈ TM and ξ ∈ T⊥M .

Proof. It follows immediately from (3.16) and (4.9). �
Theorem 4.3. Let M be a proper hemi-slant submanifold of a l.c.K. manifold M̄.
If F is parallel, then M is mixed totally geodesic.

Proof. Let F be parallel. Then, from (4.8), we have

(4.10) fh̃(U, V ) = h̃(U,PV ) .

for any U, V ∈ TM . Hence, we obtain

(4.11) f2h̃(U, V ) = fh̃(U,PV ) = h̃(U,P 2V ) .

In particular, if we put V = X ∈ D⊥ and U = Z ∈ Dθ in (4.11), with the help of
(2.17)-(a), we obtain

(4.12) f2h̃(Z,X) = h̃(Z,P 2X) = 0 .

On the other hand, using (2.11), we have

(4.13) f2h̃(Z,X) = f2h̃(X,Z) = h̃(X,P 2Z) = − cos2θh̃(X,Z)

from (4.11). Since θ ̸= π
2 , for any X ∈ D⊥ and Z ∈ Dθ, we deduce that

(4.14) h̃(X,Z) = 0
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from (4.12) and (4.13). Thus, our assertion easily comes from (3.15) and (4.14). �
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[9] Şahin, B., Warped product submanifolds of a Kähler manifold with a slant factor, Ann. Pol.

Math. 95(2009), no. 3, 207–226.
[10] Shahid, M.H. and Husain, S.I., Generic submanifolds of a locally conformal Kaehler manifold,

Soochow J. of Math. 14(1988), no. 1, 111–117.
[11] Tripathi, M.M., On CR submanifolds of nearly and closely cosympletic manifolds, Ganita,

51(2000), no. 1, 45–56.
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[13] Uddin, S., Khan M.A. and Singh, K., A note on totally umbilical pseudo-slant submanifolds

of a nearly Kähler manifold, Acta Univ. Apulensis Math. Inform. No. 29(2012), 279-285.
[14] Vaisman, I., Some curvature properties of locally conformal Kähler manifolds, Trans. Amer.

Math. Soc. 259(1980), no. 2, 439–447.

[15] Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
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