Introduction: Frailty can be defined as a state of increased vulnerability, with mutually exacerbating cycle of negative energy balance, sarcopenia, and diminished strength and tolerance for exertion. Frailty and malnutrition are frequent conditions in elderly.

Objective: Study the relationship between malnutrition and frailty in elderly.

Methods: A cross-sectional study with 66 hospitalized elderly patients (>65 years). Frailty was defined by the 9-point Clinical Frailty Scale (CFS). Nutritional status was analyzed by Mini-nutritional Assessment-Short Form (MNA-SF, >12 well-nourished, 7–12 under risk, <7 malnourished), anthropometric measures (body mass index, BMI; ideal adequacy of weight by Lorentz formula; mid-arm muscle circumference – MUAMC, <70% severe, 70–80% moderate and 80–90% mild malnutrition) and albumin (normal >3 g/dL). The risk of nutrition-related complications was calculated by Geriatric Nutritional Risk Index (GNRI, >98 no risk, <98 under risk). Categorization in two groups: G1 with CFS ≤6 (normal to moderately) and G2 with CFS >7 (severely frail).

Results: (1) There were included 38 patients in G2, with mean age of 82.1 \pm 6.3 years (vs 84.4 \pm 5.2; p = 0.116). (2) The mean MNA-SF in G2 was 8.2 \pm 3.2 (vs 12.2 \pm 2.5; p < 0.01), 44% with MNA-SF < 7 (p < 0.001). (3) G2 had lower BMI (22.3 \pm 3.3 vs 25.4 \pm 4.7; p = 0.003), lower adequacy of weight (101.1 vs 112.9%; p = 0.011), and lower MUAMC (76.8 \pm 13.3 vs 84.5 \pm 14.6 cm²; p = 0.053). (4) G2 had more hypoalbuminaemia (52 vs 21.6%; p = 0.046). (5) G2 had lower GNRI (87.4 \pm 15.5 vs 98.5 \pm 13.4; p = 0.005) and 52.9% were already at risk of malnutrition-complications. (<98, p = 0.185).

Conclusions: Because of the role of nutritional deficiency in the development of frailty, it is important to provide good nutritional support, avoiding health status deterioration and disability in older people.

P-340

Instrumented 6-minutes walk test, an approach to improve the traditional test

A. Galán-Mercant^{1,2}, T. Tomás³, B. Fernandes³. ¹University of Jaén, ²IBIMA Institute, University of Malaga, Spain; ³Escola Superior Tecnología de Saude de Lisboa, Portugal

Introduction: Exercise testing is frequently used to assist clinicians in assessing prognosis and evaluating response to treatment. The 6-min walk test is a standardized test of functional exercise capacity.

Objectives: The aim of the present study was to identify and describe the anthropometric characteristics, gait velocity and instrumented 6-min walk test with kinematics parameters from inertial sensor during the test in a Portuguese population of subjects over 65 years. **Methods:** They were measured variables related with anthropometrics, the 6-min walk test and kinematics variables in the 6-min walk test related with accelerations and angular velocity.

Results: The results were; six minutes walk (359,26 \pm 107.49 meters), initial heart rate (72,95 \pm 7,74BPM), final initial heart rate (80,58 \pm 13,86 BPM), initial systolic blood pressure (148,42 \pm 21,25 mmHg), final systolic blood pressure (164,26 \pm 24,49 mmHg), initial diastolic blood pressure (75,63 \pm 11,04 mmHg), final diastolic blood pressure (77,00 \pm 9,52 mmHg), gait velocity (1,04 \pm 0,37 m/s), max rotation rate X (1,05 \pm 0,36 rad/s), min rotation rate X (-0,82 \pm 0,33 rad/s), max rotation rate Y (2,63 \pm 0,96 rad/s), min rotation rate Y (-1,69 \pm 0,81 rad/s), max rotation rate Z (1,03 \pm 0,33 rad/s), min rotation rate Z (-1,12 \pm 0,38 rad/s), max acceleration X (0,77 \pm 0,37 m/s²), min acceleration X (-0,91 \pm 0,44 m/s²), max acceleration Y (0,53 \pm 0,23 m/s²), min acceleration Z (-0,96 \pm 0,34 m/s²).

Conclusions: The only one outcome in 6-min walk the test (total distance in meters), could be complemented with inertial sensor information. This new complement could be interesting in order to understand other dimensions in the 6-min walk or identify changes in function and results in the test after a program to improve physical fitness.

P-341

Fatih province — Geriatric Study: fragility and contributing factors in old population living the community

S. Gonultas³, A. Ersoy³, G. Bahat¹, C. Kilic¹, F. Tufan¹, S. Avcı², M.A. Karan¹. ¹Division of Geriatric, Department of Internal Medicine, Faculty of Istanbul Medicine, Istanbul University, ²Division of Geriatric, Department of Internal Medicine, Faculty of Cerrahpasa Medicine, Istanbul University, ³Faculty of Istanbul Medicine, Istanbul University, Istanbul, Turkey

Aim: In this abstract, we aimed to investigate fragility prevalence and contributing factors among the old population living in Fatih/Istanbul province.

Material and methods: Age range of 60–101 were taken into the study. The fragility screened with FRAIL-questionnaire, functional capacity measurement with KATZ-Activities-of-Daily-Living-Scale(ADL) and LAWTON-BRODY-Instrumental Activities-of-Daily Living Scale (IADL), quality of life measurement with EQ5D-questionnaire, cognitive status with Mini-Cog-test, depression with GDS-SF, malnutrition with MNA-SF, balance and gait with Romberg-test and postural-instabilitytest, were evaluated accordingly. We measured muscle mass with bioimpedance analysi s(TANITA-BC532). We evaluated muscle mass using Baumgartner index (skeletal muscle kg/length²). According to our, low muscle mass(young adult average-2SD) and muscle threshold values national data, low muscle mass values are <9.2 kg/m² vs 7.4 kg/m²; <32 kg vs <22 kg in men and women respectively. We defined sarcopenia as decrease in sarcopenic muscle mass and muscle function (muscle strength/OYH) as stated in EWGSOP definition. Obesity diagnosis is evaluated using two alternative method advised in literature: fat percentage >=60 percentile among old case population values (Zoico methodology) or BMI >=30 kg/m² (WHO definition). Findings: We included 204 old cases(94 male-110 female). Average age:75,4 ± 7,3 years.30.4% of the cases were normal,42.6% were prefrail and 27% were frail. There significant differences in these groups in terms of age/number of diseases/drugs/hand grip strength/daily life activities/EGYA/cognitive state/SÇT (p = 0.001) /MNA/ GDS/Eq-5D score and health state subjective scoring (p < 0.001); BMI (p = 0.032), OYH (p = 0.03), BIA-fat (p = 0.021) and muscle mass (p = 0.019). On the other hand, there were no significant differences in calf diameter (p = 0.25, visceral fat level (p = 0.71). While there were significant differences between the fragility groups, in terms of presence of malnutrition/fear of falling/UI/chronic pain/Romberg's sign/postural instability/ambulation level/presence of depression (p < 0.001)/ dementia (p = 0.001)/falling in past year (p = 0.011) and sex (p = 0.011)0.004), there were no significant differences in presence of diabetes (p = 0.90), hypertension (p = 0.065), fecal incontinence (p = 0.10). In regression analysis, independent factors to fragility were (dependent variable fragility (robust vs prefrail + frail), independent variables: age, sex, disease and drug number, muscle strength, egya and EQ-5D scores; cognitive dysfunction-depression, MN, falls, presence of chronic pain) drug number (OR = 1.24, p = 0.036), cognitive dysfunction (OR = 0.3, p = 0.016), EQ-5D (OR = 1.53, p = 0.017).

Results: Our study is a strong study in multiple factors are taken into account regarding fragility. Our results indicate that multiple drug usage, cognitive-dysfunction and low-life-quality perception are related major factors regarding fragility.

P-342

Comprehensively preventive approach against multi-dimensional frailty in the elderly: impact of social engagement

K. lijima¹, T. Tanaka², K. Takahashi¹, K. Toba³, K. Kozaki⁴, M. Akishita².
¹Institute of Gerontology, The University of Tokyo, ²Department of Geriatric Medicine, The University of Tokyo Hospital, ³National Center for Geriatrics and Gerontology, ⁴Department of Geriatric Medicine, Kyorin University School of Medicine

Introduction: Frailty is accelerated by sarcopenia, age-related muscle loss, and is largely overlapping geriatric conditions upstream of the disabling cascade. These multi-dimensional frailty are affected from