

Celebrating 20 Years

humanbrainmapping.org/OHBM2014

poster listings

OHBM 2014 Annual Meeting June 8-12

CCH-Congress Center Hamburg

Hamburg, Germany

On-Going Alpha Rhythm

2177

Elif Kurt^{1,2}, Basri Erdoğan³, Ali Bayram⁴, Ani Kıçik¹, Tamer Demiralp⁵

¹Istanbul University, Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey, ²Istanbul University, Hulusi Behçet Life Sciences Research Laboratory, Istanbul, Turkey, ³Istanbul Kültür University, Department of Electronic Engineering, Istanbul. Turkev. ⁴Uskudar University. Istanbul. Turkev. ⁵Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey

2178 EEG source connectivity analysis: from dense array recordings to brain networks

Mahmoud Hassan¹, Claude Berrou², Olivier dufor², Isabelle Merlet¹, Fabrice Wendling¹ ¹Université de Rennes1, Rennes, France, ²Télécom Bretagne (Institut Mines-Télécom), Brest, France

2179 Changes of the coupling of the Broca's area and language network following cTBS in healthy subjects

Woo-Kyoung Yoo¹, Marine Vernet², Shahid Bashir³, Anna-Katharine Brem⁴, Frederick Ifert-Miller⁵, Ahn HyunJung⁶, Chang-Hwan Im⁷, Mark Eldaief⁶, Alvaro Pascual-Leone⁵

¹Hallym University, Anyang, Korea, Republic of, ²Harvard Medical School — Berenson-Allen Center for Noninvasive Brain Stimulation, N/A, ³Harvard Medical School — Berenson-Allen Center for Noninvasive Brain Stimulation, Boston, MA, ⁴Berenson-Allen Center for Noninvasive Brain Stimulation. Harvard Medical School, Boston, United States, ⁵Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, ⁶Hallym Institute for Translational Genomics & Bioinformatics, Anyang, Korea, Republic of, ⁷Department of Biomedical Engineering, Hanyang Universiy, Seoul, Korea, Republic of

2180 **CLARA: Classical LORETA Analysis Recursively Applied**

Todor Iordanov¹, Karsten Hoechstetter², Patrick Berg¹, Isabella Paul-Jordanov¹, Michael Scherg¹ ¹BESA GmbH. Gräfelfing. Germanv. ²Munich University of Applied Sciences, Munich, Germany

2181 **Volume Conduction and Hurst Exponent** Estimation for the EEG

Duncan Blythe^{1,2}, Stefan Haufe³, Klaus-Robert Müller^{4,1,5}, Vadim Nikulin^{6,1} ¹BCCN Berlin, Berlin, Germany, ²TU Berlin, Berlin, Germany, ³City College of New York, New York, United States, ⁴Technische Universität Berlin, Berlin, Germany, ⁵Korea University, Seoul, Korea, Republic of, ⁶Charite, Berlin, Germany

ww4.aievolution.com/hbm1401

Effect of Handedness on P200 and its Relation

Gökçer Eskikurt¹, Numan Ermutlu², Ümmühan İşoğlu-Alkaç³ ¹Istanbul University, Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey, ²Istanbul Bilim University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey, ³Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey

2183 **Dynamic Changes of Brain Functional Connectivity**

Petr Klimes¹, Jiří Janeček¹, Pavel Jurák¹, Josef Halámek¹, Jan Chládek¹, Milan Brázdil² ¹Institute of Scientific Instruments of the ASCR, v.v.i., Brno, Czech Republic, ²Behavioral and Social Neuroscience Research Group, CEITEC-Central European Institute of Technology, Brno, Czech Republic

2184 Measurement of Cognitive Dynamics during Video Watching Through Event-Related Potentials <u>Emel Erdogdu</u>¹, Elif Kurt^{2,3}, Adil Deniz Duru⁴, Atilla

Uslu⁵, Canan Basar Eroglu⁶, Tamer Demiralp⁵ ¹University of Bremen, Bremen, Germany, ²Istanbul University, Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey, ³Istanbul University, Hulusi Behçet Life Sciences Research Laboratory, Istanbul, Turkey, ⁴Marmara University, Istanbul, Turkey, ⁵Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey, ⁶Institute of Psychology and Cognition Research, University of Bremen, Bremen, Germany

2185 The complexity of brain dynamics increased with age: an EEG Study

Junling Gao^{1,2}, Raymond Cheung³, Jicong Fan¹, Y.S. Hung⁴, Hinhung Sik⁵, Albert So⁶, Zhiguo Zhang⁷ ¹Centre of Buddhists Studies, The University of Hong Kong, Hong Kong, Hong Kong, ²Dept. of EEE, The University of Hong Kong, Hong Kong, ³Dept. of Medicine. The University of Hong Kong. Hong Kong. Hong Kong, ⁴Dept. of EEE, The University of Hong Kong, Hong Kong, Hong Kong, ⁵Centre of Buddhism Studies, The University of Hong Kong, Hong Kong, Hong Kong, ⁶The Asian Institute of Built Environment (AIBE), Hong Kong, Hong Kong, ⁷Department of Electrical and Electronic Engineering, The University of Hong Kong., Hong Kong, China

Measurement of Cognitive Dynamics during Video Watching Through Event-Related Potentials

Emel Erdogdu¹, Elif Kurt^{2,3}, Adil Deniz Duru⁴, Atilla Uslu⁵, Canan Basar-Eroglu⁶, Tamer Demiralp⁵

1 University of Bremen, Bremen, Germany

2 Istanbul University, Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey
3 Istanbul University, Hulusi Behçet Life Sciences Research Laboratory, Istanbul, Turkey
4 Marmara University, School of Physical Education and Sports, Istanbul, Turkey
5 Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey
6 Institute of Psychology and Cognition Research, University of Bremen, Bremen, Germany

Introduction

The present study aims to develop a method to follow the cognitive dynamics in the electroencephalogram (EEG) during viewing a video. To obtain a high signal/noise (S/N) ratio we aimed to record event related potentials (ERPs) under passive condition by introducing temporal triggers in the visual stream that do not significantly interfere with the real world like dynamic visual experience. The hypothesis was that slight transient changes in short sequences of video frames will produce significant ERP waveforms resembling the P3a wave obtained with the distracters of the novelty paradigm [1, 4, 5], which might be used to follow the dynamics of the attention focused to the content of the video and to measure the changing distractibility of the subject due to the changing engagement [2] to the content of the video.

Methods

We chose video segments with strong changes in the emotional valence and arousal level, such that the engagement of the subjects to the video content might be modulated. A transient light intensity effect was introduced in the videos by increasing the luminance through adding a value of 50 to the present RGB values for 150 ms (4 frames) periods with a mean ISI of 3 sec (randomized between 2-4 sec). Behavioral correlates of the engagement to the video content were tested with a long-term memory (LTM) task, where either frames from the viewed or unknown distracting frames were shown in a separate session 30 min after the video presentation. The reaction times of recalled pictures, indicated by a left button press and non-recalled pictures by a right button press were collected. By relating the response accuracy and reaction times to the specific frames of the videos through the ERPs obtained from the triggers of a segment of 30 s surrounding the frame, we tested which ERP features were modulated with the engagement of the subjects to the video content.

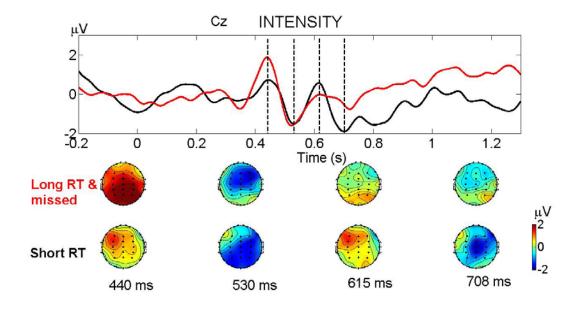
Results

Clear ERPs are generated time-locked to the video frames with increased light intensity. The strongest ERP component was a positive wave around 440 ms followed by two negative peaks around 525 and 710 ms and another positive peak around 610 ms (see figure). We found different ERP patterns at different electrode sites related to the best (short RT & correct responses) and worst (long RT & incorrect response) performances in the memory test. In the worst memory performance condition, the topography of the ERP wave around 440 ms showed a strong, widespread positivity at centro-parietal recording sites resembling the topographical pattern of a P3a wave.

For best memory performance the positivity was smaller especially in posterior channels and the topographies of the two consecutive positive waves around 440 ms and 610 ms were characterized with a left frontal distribution and roughly correspond to a theta oscillation around 5 Hz.

Conclusion

ERPs were generated by simple passive viewing of the videos without significant disturbance of the visual experience resembling a real-world like scenario. The distractive effect of the introduced changes was not strong enough to produce a clear P3a when the subjects selective attention was focused to the content of the video, while larger P3a responses were obtained when the subjects attention was less engaged, as tested by the LTM task.


The left frontal theta oscillation is compatible with the hemispheric encoding/retrieval asymmetry (HERA) model which describes the stronger involvement of the left prefrontal cortex (PFC) in episodic memory encoding [3], because its' presence in the ERPs lead to faster and correct responses during the memory test.

Acknowledgements:

Emel Erdogdu received a scholarship from the EU Erasmus program as well as the "Deutschland Stipendium" (Germany Scholarship) from Bremen University funded by a public-private-partnership for the study period at Istanbul University.

References:

- [1]. Courchesne, E., Hillyard, S.A., Galambos, R. (1975), 'Stimulus Novelty, Task Relevance, and the Visual Evoked Potential in Man', Electroencephalography and Clinical Neurophysiology, vol. 39, pp. 131-143.
- [2]. Donchin, E. (1981), 'Surprise!...Surprise?', Psychophysiology, vol. 18, pp. 493-513.
- [3]. Habib, R., Nyberg, L., Tulving, E. (2003), 'Hemispheric asymmetries of memory: the HERA model revisited', Trends in Cognitive Science, vol. 7, no. 6, pp. 241–245.
- [4]. Polich, J. (1999), 'P300 in Clinical Applications: Meaning, Method, and Measurements', In E. Neidermeyer and F. H. Lopes da Silva (Eds), Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, pp. 1073-1091, Baltimore: Williams & Wilkins.
- [5]. Polich, J. (2007), 'Updating P300: an integrative theory of P3a and P3b', Clinical Neurophysiology, vol.118, no. 10, pp. 2128-2148.

