Show simple item record

dc.contributor.authorKILINÇ, SEDAT
dc.contributor.authorOzoguz, Serdar
dc.contributor.authorYarman, Binboga Siddik
dc.date.accessioned2022-07-04T15:25:57Z
dc.date.available2022-07-04T15:25:57Z
dc.identifier.citationKILINÇ S., Yarman B. S. , Ozoguz S., "A GaN Microwave Power Amplifier Design Based on the Source/Load Pull Impedance Modeling via Virtual Gain Optimization", IEEE ACCESS, cilt.10, ss.50677-50691, 2022
dc.identifier.issn2169-3536
dc.identifier.othervv_1032021
dc.identifier.otherav_aeff7af2-9fd6-4de2-aa2d-a05e746154ab
dc.identifier.urihttp://hdl.handle.net/20.500.12627/184236
dc.identifier.urihttps://avesis.istanbul.edu.tr/api/publication/aeff7af2-9fd6-4de2-aa2d-a05e746154ab/file
dc.identifier.urihttps://doi.org/10.1109/access.2022.3174227
dc.description.abstractGeneration of proper source/load pull impedances for a selected GaN device is essential to design a microwave power amplifier for optimum gain and power-added efficiency. As they are obtained, these impedances may not be realizable network functions over the desired frequency band. Therefore, in this paper, first, we introduce a new method to test if the given source and load pull impedances are realizable. Then, a novel numerical procedure is introduced to model the source and load pull impedances as realizable network functions, which in turn results in the optimum power intake and power delivering capacity for the GaN transistor used in the design. In the numerical modelling process, a robust tool called "Virtual Gain Optimization" is presented. Numerically generated realizable source and load impedances are modelled analytically. Eventually, these impedances are synthesized using our automatic Darlington Synthesis Robot software to yield the optimum input and output matching network topologies with component values. Examples are presented to test the realizability of the given source/load pull impedance data. Then, the power intake and delivery capacity of the active device are assessed for a 10W-GaN power transistor, namely "Wolfspeed CGH40010F" over 0.8-3.0 GHz bandwidth. Eventually, the power amplifier is designed and manufactured. It is shown that the computed and the measured performance of the amplifier is very close with 10 Watts output power, 11.4 +/- 0.6 dB gain and 49% to 76 % power added efficiency.
dc.language.isoeng
dc.subjectBilgisayar Bilimleri
dc.subjectBilgi Güvenliği ve Güvenilirliği
dc.subjectMühendislik ve Teknoloji
dc.subjectSignal Processing
dc.subjectGeneral Engineering
dc.subjectGeneral Computer Science
dc.subjectEngineering (miscellaneous)
dc.subjectElectrical and Electronic Engineering
dc.subjectComputer Science (miscellaneous)
dc.subjectComputer Networks and Communications
dc.subjectComputer Science Applications
dc.subjectInformation Systems
dc.subjectPhysical Sciences
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectTELEKOMÜNİKASYON
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, BİLGİ SİSTEMLERİ
dc.subjectSinyal İşleme
dc.titleA GaN Microwave Power Amplifier Design Based on the Source/Load Pull Impedance Modeling via Virtual Gain Optimization
dc.typeMakale
dc.relation.journalIEEE ACCESS
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , Mühendislik Fakültesi , Elektrik Elektronik Mühendisliği Bölümü
dc.identifier.volume10
dc.identifier.startpage50677
dc.identifier.endpage50691
dc.contributor.firstauthorID3425266


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record