Basit öğe kaydını göster

dc.contributor.authorLiu, Yi
dc.date.accessioned2023-02-21T09:44:19Z
dc.date.available2023-02-21T09:44:19Z
dc.identifier.citationLiu Y., "Construction of Credit Knowledge Service Model in Financial Field Based on Integrated SVM Data Stream Classification Algorithm", 2nd International Conference on Forthcoming Networks and Sustainability in the IoT Era (FoNeS-IoT), ELECTR NETWORK, 8 - 09 Ocak 2022, cilt.129, ss.174-181
dc.identifier.otherav_34c36970-0ff4-47da-a528-2d8d772de9e2
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/187769
dc.identifier.urihttps://doi.org/10.1007/978-3-030-99616-1_23
dc.description.abstractWith the widespread application of new technologies in the financial field, many new service models or companies have emerged in China. These new companies have transformed traditional financial service companies and have had a huge impact on the financial industry. Internet finance companies use mobile Internet, cloud computing, big data and other technologies to vigorously expand the fields of payment, lending, investment, asset management and other fields, and continue to expand applications and business fields, which has caused a lot of shock to the traditional financial sector. The purpose of this paper is to study the construction of a credit knowledge service model in the financial field based on the integrated SVM data stream classification algorithm. This paper establishes the construction of a credit knowledge service model in the financial field based on the integrated SVM data stream classification algorithm, and analyzes the specific content of the credit knowledge service in the financial field in detail. According to the experimental research in this article, the accuracy of financial data retrieval based on the integrated SVM data stream classification algorithm proposed in this article is very high. When the search result of the EASR algorithm of the flow classification algorithm is different from the detection result of the engine's own algorithm, the accuracy of the EASR algorithm is higher, reaching about 92.2%.
dc.language.isoeng
dc.subjectBilgisayar Bilimleri
dc.subjectBiyoenformatik
dc.subjectMühendislik ve Teknoloji
dc.subjectTeorik Bilgisayar Bilimi
dc.subjectGenel Mühendislik
dc.subjectMühendislik (çeşitli)
dc.subjectBilgisayar Bilimi Uygulamaları
dc.subjectBilgisayar Ağları ve İletişim
dc.subjectBilgisayar Bilimi (çeşitli)
dc.subjectGenel Bilgisayar Bilimi
dc.subjectMühendislik
dc.subjectFizik Bilimleri
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectTELEKOMÜNİKASYON
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.titleConstruction of Credit Knowledge Service Model in Financial Field Based on Integrated SVM Data Stream Classification Algorithm
dc.typeBildiri
dc.contributor.departmentShanghai Lida Polytechnic Institute , ,
dc.identifier.volume129
dc.contributor.firstauthorID3454828


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster