• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fabrication of ultra-sensitive humidity sensors based on Ce-doped ZnO nanostructure with superfast response and recovery time

Date
2023
Author
AKÇAY, Namık
ALGÜN, Gökhan
Öztel, Halim Onur
Metadata
Show full item record
Abstract
In this study, the effect of cerium (Ce) concentration on humidity sensing performance of humidity sensors based on Ce-doped zinc oxide nanostructure was investigated. Undoped ZnO (uZnO) and Ce-doped zinc oxide (CZO) nanoparticles were synthesized by sol–gel method. X-ray diffraction analyzes revealed that all nanostructures have a hexagonal wurtzite crystal structure and preferential orientation along the (002) plane. Scanning electron microscopy micrographs showed that there are homogeneously and uniformly distributed nanosized grains and capillary-nanopores on the surfaces of nanostructures. The energy dispersive x-ray spectroscopy analyzes confirmed the presence of zinc, oxygen and Ce elements in the nanostructures. The relative humidity (RH) sensing performances of uZnO and CZO nanostructured sensors were determined by means of electrical resistance measurements in the range of 40–90% RH at room temperature. The humidity sensing performance of the zinc oxide (ZnO) nanostructured sensor was significantly increased by Ce doping. All of the CZO sensors showed very high sensitivity to humidity and very short response and recovery times were achieved. It has been determined that 3 mol% Ce-doped ZnO has the best crystallite quality, the highest humidity sensitivity with a ratio of 7490 in the range of 40–90% RH, and the fastest times with a response time of 0.8 s and a recovery time of 4.7 s. This study clearly showed that CZO nanostructures, which we produce easily and at low cost, have the ideal humidity sensor potential and therefore have a bright future for humidity sensor applications.
URI
http://hdl.handle.net/20.500.12627/189533
https://doi.org/10.1007/s10854-023-10973-y
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85165368293&origin=inward
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV