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Sequential leaf senescence is defined as a kind of programmed death events which is an important 
process in growth of plant. This study aimed to explore the sequential leaf senescence rate due to 
indoleacetic acid and lack of zinc (-Zn). Therefore, the effect of zinc and indole-3-acetic acid on 
senescence which occurs in Helianthus annuus (sunflower) cotyledons was analyzed. It was found that 
in cotyledons of seedlings grown in Hoagland solution which was prepared without addition of zinc 
senescence is delayed. It was recognised that in case of 14C indoleacetic acid (IAA) which was given 
from apical tip not reaching the root and cotyledons, senescence does not occur in cotyledons. It was 
studied to get more information about physiological system of sequential leaf senescence. 
 
Key words: Sequential leaf senescence, cotyledon, zinc, 14C indole-acetic acid (IAA), Helianthus annuus 
(sunflower). 

 
 
INTRODUCTION 
 
Senescence is the final phase of plant vegetative and 
reproductive development, preceding the widespread 
death of cells and organs (Schmid et al., 1999; 
Guiboileau et al., 2010; Caswell and Salguero-Gomez, 
2013). It has long been known that hormones regulate 
the progression of leaf senescence (Fletcher and 
Osborne, 1965; Misra and Biswal, 1980; Noodén and 
Leopold, 1988; Jibran et al., 2013). In the process of 
senescence, destruction cases occur more than 
synthesis. From point of that view, definition of senes-
cence is the process which increases destruction cases in 
cell and causes the plant to die.  

The analysis made on leaf cells shows that during 
senescence consecutive metabolic events occur. These 

events can be ordered as the synthesis of proteolitic 
enzyme (Colin and Thimann, 1972; Cheng and Kao, 
1984; Hörtensteiner and Feller, 2002), the start of 
destruction of membrane proteins caused by these 
enzyme’s activities, the decrease of quantity of protein 
and total nitrogen in the cell (Krul, 1974; Peterson and 
Huffaker, 1975; Peoples and Dalling, 1978, Prakash et 
al., 2001; Hopkins et al., 2007; Kaplan-Dalyan and 
Sağlam-Çağ, 2013), the acceleration of chlorophyll 
destruction (Peoples et al., 1980; Rodoni et al., 1997; 
Hörtensteiner, 2006; Darnel et al., 1990) and lipid 
destruction (Dhindsa et al., 1982; Harwood et al., 1982; 
Thompson et al., 1998; Hebeler et al., 2008). It is 
accepted that transportation of nutrients in other leaves
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starting from the oldest organ to the youngest supports 
the nutrient drain hypothesis. According to another 
hypothesis called ‘signal’ hypothesis, a signal which is 
thought to be synthesized by developing seeds, is being 
transported to old leaves and causes senescence as a 
result of catabolic reactions. According to this hypothesis, 
if the signal center is eliminated, senescence does not 
occur (Lindoo and Noodén, 1977). But the above 
mentioned signal has been displayed that it could not be 
isolated (Moore, 1979; Ridge, 1991). It is obviously 
known that the cause of all biochemical events during 
senescence are releated to gene expression (Draper, 
1969; Sanders and Write, 1995; Hörtensteiner, 1997; 
Distelfeld et al., 2014). The meanings of these chemical 
events come into being only with the researches made by 
plant physiologs on plant’s physiology. While it is being 
said that auxins (Wareing and Seth, 1967; Kahanak et 
al., 1978; Lim et al. 2003) delay senescence, researches 
made recently indicate that auxins (Palni et al., 1988; Lu 
et al., 2001; Gören and Sağlam-Çağ, 2007)  accelerate the 
senescence. Otherwise, Noh and Amasino (Noh and 
Amasino, 1999) detected that auxin represses transcription 
of some genes whose expression is correlated with 
senescence. 
 
 
MATERIALS AND METHODS 
 
Helianthus annuus L. seedlings were grown in intensity of 6000 lux 
light, under 12 h photoperiod and 26 ± 2°C. 
 
 
Designation of senescence degree  
 
To determine the senescence which occur in cotyledons of H. 
annuus quantitatively the method improved and used for soya 
bean’s Anoca variety-show by Lindoo and Noodén (1976)  was 
adapted to H. annuus cotyledons. For chlorophyll designation 
Arnon (1949) method was used. To determine total nitrogen 
quantity a method, formed with combination of Kjeldahl method and 
spectrophometric measurement method was used (Lindoo and 
Noodén, 1976). The zinc quantity in the material was designated 
with atomic absorption spectrophotometer (AAS). 
 
 
Giving IAA to the cut ends of the decapitated seedlings  
 
One to two days before senescence starts in cotyledons, seedlings 
were decapitated by being cut approximately 3 cm above the 
internodium cotyledons. 10-5 M. IAA solution (treated) or water 
(control) was applied to decapitated surface. 
 
 
Giving 14C–IAA to the seedlings on the top buds and nodium 
leaves  
 
10-5 mol. 14C-IAA (specific activity:40 mCi / mmol.) 1 drop 1% 
tween-20 was added per 1 ml. 60 and 120 µl from IAA solution was 
dropped on plant’s top bud, 80 and 320 �l was dropped on nodium 
leaves. To hinder indolacedic acid’s photo oxidation, this process 
was made when the plants were passing to dark period. The whole 
organ, of which radioactivity will be  enumerated  in β counter  was 
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prepared accordingly. Counting value of the material per 5 min 
(cp5m=count per 5 min) was calculated.  
 
 
Statistic evaluation of the results  
 
Standard deviation estimate was made to evaluate the results 
obtained from experiment and control groups statistically. In case of 
the number obtained when ± values of differences between the 
result’s square’s total sum’s square root is multiplied with three is 
found to be smaller than the difference between values, the 
difference is decided to be significant statistically. 
 
 
RESULTS 
 
As it is known that zinc provides indole-acetic acid (IAA) 
stabilization and in case of zinc deficiency quantity of IAA 
decreases, this mineral's effects on plant growing and 
cotyledon senescence were analysed. The seedlings 
forming the experiment group were grown in Hoagland 
solution which does not include zinc and was diluted in 
1/8 ratio (Table 1). Senescence delayed in cotyledons of 
seedlings in -Zn solution. Besides with the ingathering, 
when cotyledon senescence in plants grown with the 
existence of zinc (control) is 50% according to 
plastochron index (28th day), total chlorophyll and total 
nitrogen quantities in cotyledons of all seedlings 
belonging to experiment or control group (Table 2). The 
quantity of the zinc which is thought to exist in the seed 
naturally was measured with AAS (Figure 1). Nineteen 
days old H. annuus seedlings were devided into 4 
groups. First group plants were intact (control). Other 
group plants were given IAA, NAA and H2O from 
truncated end being decapitated from under 2nd 
internodium. After this process the speed of senescence 
occuring in cotyledons was observed (Figure 2). In 
cotyledons of plants to which IAA and NAA applied 
senescence occured quickly just like it occurs in 
cotyledons of intact plants. However, in a great majority 
of plants having a process with H2O, cotyledons 
remained green. Senescence did not occur in the 
cotyledons of the 17 days old experiment and control 
seedlings which were exposed to the same process and 
application. To determine first which organ as a target 
indolacedic acid after being produced in the plant is 
transported, 120 µl from 10-5M 14C-IAA+tween 20 upon 
top bud of the plants was dropped in. After dark period for 
12 h, the quantity of 14C-IAA in the roots and cotyledons 
of the plants was stated (Table 3). Radioactivity existing 
in the root is found to be more than 20 times more than 
the radioactivity in cotyledons. From the values obtained 
it was understood that IAA given from top bud was 
transported quickly to the root. On the other hand, from 
the middle of the first internodium’s of the seedlings, a 
part, approximately 1 cm was boiled with hot water 
vapour on the 17 day 60 µl 10-5 M-IAA+tween 20 was 
dropped in the top bud of the plants of which cotyledons 
was just 100% gren on the 32 day. After dark period for 
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Figure 2. Green area (%) of cotyledons of 19 days old H. annuus seedlings which were decapitated below the second internode 
and treated with 10-5M IAA, 10-5M NAA or H2O from the truncated end.  

 
 
 

Table 3. 14C amounts in the roots and cotyledons of H. annuus seedlings treated with 10-5 M 14C-IAA 
( Significant).  
 

Organ Count / 5 min Radiation of background Difference 

Cotyledon 299.85 ± 31.25 288.36  3.015 11.49 

Root 875.41 ± 29.09 288.36   3.015 587.05 * 
 
 
 

Table 4. 14C amounts in different organs of H. annuus seedlings treated with 10-5 M 14C-IAA ( Significant) . 
 

Organ Count / 5 min Radiation of background Difference 

2nd node leaves 306.92  7.05 288.36  3.015 18.56 

First internode 1039.33  57.63 288.36  3.015 750.97 * 

100% Green cotyledon 299.87  7.66 288.36  3.015 11.51 

Hypocotyl 304.00   11.82 288.36  3.015 15.64 

Root 313.00   10.64 288.36  3.015 24.64 
 
 
 
Table 5. 14C amounts in the roots and 3rd node leaf of H. annuus seedlings leaf on different days after 10-5 M 14C-IAA treatments on the 2nd 
nodium.  ( Significant).   
 

Day 
Root 

(Count / 5 min) 
3rd nodium leaf 
(count / 5 min) 

Radiation of 
background 

Difference  
(root) 

Difference 
(3 rd nodium leaf) 

20 318,44  11.627 302,67  3.567 288.36  3.015 30.08 14.31 * 

21 489,11  34.310 352,22  10.97 288.36  3.015 200.75* 63.86 * 

22 454.00  45.287 342.00  14.09 288.36  3.015 165.64 * 53.64 * 

25 485,67 11.794 712,89  131.27 288.36  3.015 197.31 * 424.53 * 
 
 
 
searched. In a reseach (Ray and Choudhuri, 1981), it 
was supported that hormones (IAA, GA, Kinetin) plays 
the most important role in transporting nutrients to seeds 
that develops as an endogenic hormone resource. It is 
known that the deficiency of the hormones which 
perevents senescence (for ex: cytokinin) may cause 
senescence. Palni et al. (1988) mentions that auxin has 

an effect on cytokinin’s metabolism and this effect is 
actualized by oxidase enzyme. While some researchers 
(Jacobs and Cready, 1967; Sanchez-Bravo et al., 1991) 
declare that indolacedic acid localize in cortex, vascular 
tissue and pith, auxin is transported in vascular and 
epidermal tissues, other researchers (Bangerth, 1994; 
Ekölf et al., 1995; Li et al., 1995; Shimizu-Sato et al., 2009) 
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emphasized that intact plants’s cytokinins in xylem 
exudate are under the control of polar auxin transpor-
tation system. Hare and Staden (1994) expressed that 
cytokinin catabolism which becomes true with the activity 
of sitokinin, a specific enzyme oksidase realizes death in 
plant tissue and moreover stated that auxin plays the role 
of allosteric systematizer increasing this enzyme’s activity. 

It is known that indolacedic acid is synthesized in the 
end of stem and zinc provides the stabilization of 
indolacedic acid (Skoog, 1940; Takaki and Kushizaki, 
1970). In the early development phase of the plants of 
which endogen IAA quantity was decreased by being 
grown in zinc deficiency, IAA that is under the control of 
the quantity of zinc in the seed has such a quantity that it 
delays the senescence but can provide growing. But zinc 
which is given with Hoagland solution in addition to the 
zinc quantity in the seedling may be impulsive in 
senescence or may delay growing because of its toxical 
effects on some enzyme systems releated to growing. 
Likewise, Sağlam-Çağ and others (Sağlam-Çağ et al., 2004)  
emphasized that senescence was delayed in excised 
cotyledons in the solution lacking zinc. In that research, in 
the existence or deficiency of zinc, IAA which can be 
controlled endogenly was hold to be responsible for the 
change in senescence’s speed. In some experiments 
which 14C-IAA was used (Hew et al., 1967), it was noticed 
that IAA given from truncated end of the stem goes 
through stem axis quickly and don’t enter to leaves. Also, 
in this research it was found that 14C-IAA was transported 
to root without touching at leaves. Moreover, as 14C’s 
internodium does not goes through boiled part, it was 
noticed that it could not reach the root and cotyledons 
and senescence didn’t occur in cotyledons. 

We can assert that sequential leaf senescence is 
releated to the occurance of metaxylem after protoxylem 
and in this event, with IAA’s effect on xylem formation, it 
may come on the scene. Just before senescence, 
although senescence occured when IAA was applied 
from truncated top, cotyledons remained green when IAA 
was applied in early phase. Researhers (Shimomura et 
al., 1988; Jones et al., 1989; Jones, 1994) indicated that 
there are 2 different receptor in plasma membrane 
connecting IAA and in recent years it was determined 
that first one of these receptors isolated is releated to cell 
growing but then any absolute information about second 
IAA receptor’s function wasn’t given (Darnel et al., 1990; 
Cooper, 1997). 

As a result of our research, we saw that zinc, providing 
IAA stabilization accelerates senescence; in the researches 
made with 14C, as its internodium does not go through 
boiled part 14C-IAA given from apex, it can not reach root 
and cotyledons and senescence does not occur in 
cotyledons. It became certain that it was transported to 
the root without touching at leaves and this transportation 
is made by parenchymatic living tissues not xylem. This 
research indicated that senescence signal may be indole-
acetic acid or a substance like indoleacetic acid. 
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