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Abstract. We study anti-invariant and Lagrangian submersions from
trans-Sasakian manifolds onto Riemannian manifolds. We prove that
the horizontal distributions of such submersions are not integrable and
their fibers are not totally geodesic. Consequently, they cannot be totally
geodesic maps. We also check that the harmonicity of such submersions.
In particular, we show that they cannot be harmonic in the case when the
Reeb vector field is horizontal.
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1 Introduction

One of the popular research areas in differential geometry is the theory of Riemannian
submersions which was initiated by O’Neill [15] and Gray [9]. Watson [25] considered
Riemannian submersions between almost Hermitian manifolds under the name of al-
most Hermitian submersions. Afterwards, almost Hermitian submersions have been
actively studied between different subclasses of almost Hermitian manifolds. Also,
Riemannian submersions were extended to several subclasses of almost contact mani-
folds under the name of contact Riemannian submersions. Most of the studies related
to Riemannian, almost Hermitian or contact Riemannian submersions can be found
in the book [8].

The theory of anti-invariant Riemannian and Lagrangian submersions has been
becoming a very active research area since Şahin [18] first defined such submersions
from almost Hermitian manifolds onto Riemannian manifolds. In fact, anti-invariant
Riemannian and Lagrangian submersions have been studying in different kinds of
structures such as Kähler [18, 20], nearly Kähler [19], almost product [11], locally
product Riemannian [22], Sasakian [13, 21, 23], Kenmotsu [5, 23] and cosymplectic
[14]. Note that the notion of anti-invariant Riemannian submersion was generalized
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to the notion of conformal anti-invariant submersion [1]. Most of the studies related
to the theory of anti-invariant Riemannian and Lagrangian submersions can be found
in Şahin’s monograph [17].

This paper is organized as follows. In section 2, we present basic notion and
definition of trans-Sasakian manifolds. In section 3, we give some background for
Riemannian submersions. In section 4, we recall the definition of anti-invariant and
Lagrangian submersions. In section 5, we study anti-invariant submersions from trans-
Sasakian manifolds onto Riemannian manifolds admitting vertical Reeb vector field,
provide an example and give their some characteristic properties. The case of the Reeb
vector field is horizontal is discussed in section 6. In section 7, we consider Lagrangian
submersions admitting vertical Reeb vector field and investigate the geometry of the
vertical and horizontal distributions. We also give a necessary and sufficient condition
for such submersions to be harmonic. Similar studies for Lagrangian submersions
admitting horizontal Reeb vector field are placed in the last section.

2 Trans-Sasakian manifolds

Let (M, g) be a (2m + 1)-dimensional Riemannian manifold. Then M is called an
almost contact metric manifold [3] if there exists a tensor φ of type (1, 1) and global
vector field ξ which is called the Reeb vector field or the characteristic vector field
such that, if η is the dual 1-form of ξ, then we have

(2.1) φξ = 0, η(ξ) = 1, φ2 = −I + η ⊗ ξ, g(φE,φF ) = g(E,F )− η(E)η(F ) ,

where E and F are any vector fields on M . Also, it can be deduced from the above
axioms that η ◦ φ = 0 and η(E) = g(E, ξ). In this case, (φ, ξ, η, g) is called the
almost contact metric structure of M.
An almost contact metric structure (φ, ξ, η, g) on a connected manifold M is called
trans-Sasakian manifold [16] if (M ×R, J,G) belongs to the class W4 [10], where J is
the almost complex structure on M × R given by

J(E, λ
d

dt
) = (φE − λξ,−η(E)

d

dt
)

for all vector fields E on M and λ is a smooth function on M × R, and G is the
product metric on M × R. This definition is equivalent to the condition [4]

(∇Eφ)F = α[g(E,F )ξ − η(F )E] + β[g(φE,F )ξ − η(F )φE](2.2)

for functions α and β and the Levi-Civita connection∇ onM . Sometimes, (M,φ, ξ, η, g)
is called a trans-Sasakian manifold of type (α, β). It can be deduced from (2.2) that

(2.3) ∇Eξ = −αφE + β(E − η(E)ξ) .
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3 Riemannian submersions

In this section, we give necessary background for Riemannian submersions.

Let (M, g) and (N, gN) be Riemannian manifolds, where dim(M) > dim(N). A
surjective mapping π : (M, g) → (N, gN ) is called a Riemannian submersion [15] if:
(S1) The rank of π equals dim(N).

In this case, for each q ∈ N , π−1(q) = π−1
q is a k-dimensional submanifold of M

and called a fiber, where k = dim(M)−dim(N). A vector field on M is called vertical
(resp. horizontal) if it is always tangent (resp. orthogonal) to fibers. A vector field
X on M is called basic if X is horizontal and π-related to a vector field X∗ on N, i.e.
, π∗(Xp) = X∗π(p) for all p ∈ M, where π∗ is derivative or differential map of π. We
will denote by V and H the projections on the vertical distribution kerπ∗, and the
horizontal distribution kerπ⊥

∗ , respectively. As usual, the manifold (M, g) is called
total manifold and the manifold (N, gN ) is called base manifold of the submersion
π : (M, g) → (N, gN ).

(S2) π∗ preserves the lengths of the horizontal vectors.

This condition is equivalent to say that the derivative map π∗ of π, restricted to
kerπ⊥

∗ , is a linear isometry. The geometry of Riemannian submersions is characterized
by O’Neill’s tensors T and A, defined as follows:

(3.1) TEF = V∇VEHF +H∇VEVF,

(3.2) AEF = V∇HEHF +H∇HEVF

for any vector fields E and F on M, where ∇ is the Levi-Civita connection of g. It is
easy to see that TE and AE are skew-symmetric operators on the tangent bundle of M
reversing the vertical and the horizontal distributions. We summarize the properties
of the tensor fields T and A. Let V,W be vertical and X,Y be horizontal vector fields
on M , then we have

(3.3) TV W = TWV,

(3.4) AXY = −AY X =
1

2
V[X,Y ].

On the other hand, from (1) and (2), we obtain

(3.5) ∇V W = TV W + ∇̂V W,

(3.6) ∇V X = TV X +H∇V X,

(3.7) ∇XV = AXV + V∇XV,
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(3.8) ∇XY = H∇XY +AXY,

where ∇̂V W = V∇V W . Moreover, if X is basic, then we have H∇V X = AXV . It
is not difficult to observe that T acts on the fibers as the second fundamental form
while A acts on the horizontal distribution and measures of the obstruction to the
integrability of this distribution. For details on the Riemannian submersions, we refer
to O’Neill’s paper [15] and to the book [8].

Any fiber of a Riemannian submersion π : (M, g) → (N, gN ) is called totally
umbilical provided

(3.9) TUV = g(U, V )H, ∀ U, V ∈ Γ(kerπ∗),

where H is the mean curvature vector field of the fiber in M , see [8].

4 Anti-invariant Riemannian and Lagrangian
submersions from trans-Sasakian manifolds

We first recall the definition of an anti-invariant Riemannian submersion whose total
manifold is almost contact metric manifold.

Definition 4.1. ([13]) Let M be a (2m + 1)-dimensional almost contact metric
manifold with almost contact metric structure (φ, ξ, η, g) and N be a Riemannian
manifold with Riemannian metric gN . Suppose that there exists a Riemannian sub-
mersion π : M → N such that the vertical distribution kerπ∗ is anti-invariant with
respect to φ, i.e., φkerπ∗ ⊆ kerπ⊥

∗ . Then the Riemannian submersion π is called
an anti-invariant Riemannian submersion. We shall briefly call such submersions as
anti-invariant submersions.

In this case, the horizontal distribution kerπ⊥
∗ is decomposed as

(4.1) kerπ⊥
∗ = φkerπ∗ ⊕ µ ,

where µ is the orthogonal complementary distribution of φkerπ∗ in kerπ⊥
∗ and it is

invariant with respect to φ.

We say that an anti-invariant π : M → N admits vertical Reeb vector field if the
Reeb vector field ξ is tangent to kerπ∗ and it admits horizontal Reeb vector field if
the Reeb vector field ξ is normal to kerπ∗. It is easy to see that µ contains the Reeb
vector field ξ in the case of π : M → N admits horizontal Reeb vector field ξ.

For some details of the anti-invariant submersions from an almost contact metric
manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN ); see [5, 13, 14, 21].

Remark 4.2. Throughout this paper, as a total manifold of an anti-invariant sub-
mersion, we consider a trans-sasakian manifold (M,φ, ξ, η, g) of type (α, β) such that
both α ̸= 0 and β ̸= 0.
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The notion of Lagrangian submersion is a special case of the notion of anti-
invariant submersion. We next recall the definition of a Lagrangian submersion from
almost contact metric manifold onto a Riemannian manifold.

Definition 4.3. ([21]) Let π be an anti-invariant Riemannian submersion from an
almost contact metric manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN ).
If µ = {0} or µ = span{ξ}, i.e., kerπ⊥

∗ = φ(kerπ∗) or kerπ⊥
∗ = φ(kerπ∗)⊕ < ξ >,

respectively, then we call π a Lagrangian submersion.

Remark 4.4. This case has been studied partially as a special case of an anti-
invariant Riemannian submersion; see [5, 13, 14, 21] for some details.

5 Anti-invariant submersions admitting vertical Reeb
vector field

In this section, we begin to study anti-invariant submersions admitting vertical Reeb
vector field from trans-sasakian manifolds (M,φ, ξ, η, g) of type (α, β) by giving a
(non-trivial) example.

Example 5.1. Let M be a 3-dimensional Euclidean space given by

M = {(x, y, z) ∈ R3 | yz ̸= 0}.

We consider the trans-Sasakian structure (φ, ξ, η, g) onM with α = −1
2z

2 and β = − 1
z

[7] given by the following:

ξ =
∂

∂z
, η = dz, g =

 1
(1+y2)z2 0 1

yz

0 1
z2 0

1
yz 0 1

 and φ =

 0 −1 0
1 0 0
0 0 0

 .

An orthonormal φ-basis for this structure can be given by{
E1 = z(

∂

∂x
+ y

∂

∂z
), E2 = z

∂

∂y
, E3 =

∂

∂z

}
.

Now, we define the map π : (M,φ, ξ, η, g) → (R, g1) by the following:

π(x, y, z) =
x+ y√

2
,

where g1 is the usual metric on R. Then, the Jacobian matrix of π is as follows:[
1√
2

1√
2

0

]
Since the rank of this matrix equals 1, the map π is a submersion. After some
calculation, we see that

kerπ∗ = span

{
V =

E1 − E2√
2

, W = E3

}
,
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and

kerπ⊥
∗ = span

{
X =

E1 + E2√
2

}
.

By direct calculation, we see that π satisfies the condition S2). Hence, π is a Rie-
mannian submersion. Moreover, we have φ(V ) = X. Therefore, π is an anti-invariant
submersion admitting vertical Reeb vector field.

Let π be an anti-invariant submersion from a trans-Sasakian manifold (M,φ, ξ, η, g)
onto a Riemannian manifold (N, gN). For any X ∈ kerπ⊥

∗ , we write

φX = BX + CX ,(5.1)

where BX ∈ Γ(kerπ∗) and CX ∈ Γ(kerπ⊥
∗ ). At first, we examine how the trans-

Sasakian structure on M has effects on the tensor fields T and A of the submersion
π.

Lemma 5.1. Let π be an anti-invariant submersion from a trans-Sasakian mani-
fold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN) admitting vertical Reeb vector
field. Then, we have

TUφV − αg(U, V )ξ = BTUV − η(V )U ,(5.2)

H∇UφV = CTUV + φ∇̂UV − βη(V )φU(5.3)

∇̂V BX + TV CX = BH∇V X + βg(φV,X)ξ(5.4)

TV BX +H∇V CX = CH∇V X + φTV X(5.5)

AXφV = BAXV + βg(φX, V )ξ − βη(V )BX(5.6)

H∇XφV + αη(V )X = φ(V∇XV ) + CAXV − βη(V )CX(5.7)

V∇XBY +AXCY = BH∇XY + αg(X,Y )ξ(5.8)

+βg(φX, Y )ξ − βη(Y )BX

AXBY +H∇XCY = CH∇XY + φAXY(5.9)

where U, V ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ⊥
∗ ).

Proof. For any U, V ∈ Γ(kerπ∗), from (2.2), we have

∇UφV = φ∇UV + α[g(U, V )ξ − η(V )U ] + β[g(φU, V )ξ − η(V )φU ].

Hence, using (3.5), (3.6) and (5.1), we obtain

H∇UφV + TUφV = BTUV + CTUV + φ∇̂V W(5.10)

+α[g(V,W )ξ − η(W )V ]− βη(V )φU.
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In view of the fact that ξ is vertical, taking the vertical and horizontal parts of (5.10),
we get (5.2) and (5.3), respectively.

Now, let X and Y be any horizontal vector fields. Again, from (2.2), we have

∇XφY = φ∇XY + α[g(X,Y )ξ − η(Y )X]

+β[g(φX, Y )ξ − η(Y )φX].

Hence, using (3.7), (3.8) and (5.1), we obtain

AXBY + V∇XBY +H∇XCY +AXCY(5.11)

= BH∇XY + CH∇XY + φAXY + α[g(X,Y )ξ − η(Y )X]

+β[g(φX, Y )ξ − η(Y )φX].

If we take the vertical and horizontal parts of (5.11) and using the fact that ξ is
vertical, we easily get (5.8) and (5.9), respectively. The other assertions can be
obtained in a similar way. �

Let π be an anti-invariant submersion admitting vertical Reeb vector field from
a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN). Then,
using (5.1) and the condition (S2), we derive g(π∗φV, π∗CX) = 0, for every X ∈
Γ(kerπ∗

⊥) and V ∈ Γ(kerπ∗), which implies that

(5.12) T N = π∗(φ(kerπ∗))⊕π∗(µ) .

From (2.1) and (5.1), we have following Lemma.

Lemma 5.2. Let π be an anti-invariant submersion admitting vertical Reeb vector
field from a trans-Sasakian manifold (M,φ, ξ, η, g) to a Riemannian manifold (N, gN ).
Then we have

BCX = 0, φBX + C2X = −X

for any X ∈ Γ(kerπ∗
⊥).

Lemma 5.3. Let π be an anti-invariant Riemannian submersion admitting verti-
cal Reeb vector field from a trans-Sasakian manifold (M,φ, ξ, η, g) to a Riemannian
manifold (N, gN). Then we have

CX = − 1

α
AXξ,(5.13)

g(AXξ, φU) = 0,(5.14)

g(∇Y AXξ, φU) = −g(AXξ, ϕAY U) + αη(U)g(AXξ, Y )(5.15)

+βη(U)g(AXξ, φX)

g(X,AY ξ) = −g(Y,AXξ)(5.16)

for X,Y ∈ Γ(kerπ∗
⊥) and U ∈ Γ(kerπ∗).
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Proof. By virtue of (3.7) and (2.3) we have (5.13).
For X ∈ Γ(kerπ∗

⊥) and U ∈ Γ(kerπ∗), by virtue of (3.2), (5.1)and (5.13) we get

g(AXξ, ϕU) = −g(αϕX − αBX,ϕU)(5.17)

= −αg(X,U) + αη(X)η(U)− αg(ϕBX,U).

Since ϕBX ∈ Γ(kerπ∗
⊥) and ξ ∈ Γ(kerπ∗), (5.17) implies (5.14).

Now from (5.14) we get

g(∇Y AXξ, φU) = −g(AXξ,∇Y φU)

for X,Y ∈ Γ(kerπ∗
⊥) and U ∈ Γ(kerπ∗). Then using geodesic condition and (2.2)

we have

g(∇Y AXξ, φU) = −g(AXξ, φAY U)− g(AXξ, φ(V∇Y U))

+αη(U)g(AXξ, Y ) + βη(U)g(AXξ, φX).

Since φ(V∇Y U) ∈ Γ(φkerπ∗) = Γ(kerπ∗
⊥), we obtain (5.15). Using the skew-

symmetricness of A and (3.4), we obtain directly (5.16). �

6 Anti-invariant submersions admitting horizontal
Reeb vector field

In this section, we begin to study anti-invariant submersions admitting horizonal
Reeb vector field from trans-sasakian manifolds (M,φ, ξ, η, g) of type (α, β) by giving
a (non-trivial) example.

Example 6.1. Let R5
be five-dimensional Euclidean space given by

R5
= {(x, y, z, u, v) ∈ R5 | (x, y) ̸= (0, 0), (u, v) ̸= (0, 0) and z ̸= 0}.

The vector fields

E1 = 2(− ∂
∂x + y ∂

∂z ), E2 = 2 ∂
∂y , E3 = 2 ∂

∂z , E4 = 2(− ∂
∂u + v ∂

∂z ), E5 = 2 ∂
∂v .

are linearly independent at each point of R5
. Then, we can choose a trans-Sasakian

structure (φ, ξ, η, g) on R5
such as ξ = E3, η = 1

2dz, g is defined by g(Ei, Ej) = δji
and φ is defined by as follows:

φE1 = E2, φE2 = −E1, φE3 = 0, φE4 = E5, φE5 = −E4 .

Indeed, (φ, ξ, η, g) is a trans-Sasakian structure on R5
with α = −1 and β = 1, see [6].

Now, we consider the map π : (R5
, φ, ξ, η, g) → (R3, g3) defined by the following:

π(x, y, z, u, v) =

(
x− y√

2
,
u− v√

2
, z

)
,
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where g3 is the Euclidean metric on R3. Then, the Jacobian matrix of π is as follows: 1√
2

− 1√
2

0 0 0

0 0 1√
2

− 1√
2

0

0 0 0 0 1

 .

Since the rank of this matrix is equal to 3, the map π is a submersion. One can see
that π satisfies the condition S2). Therefore, π is a Riemannian submersion. After
some computations, we have

kerπ∗ = span

{
V =

E1 + E2√
2

, W =
E4 + E5√

2

}
,

and

kerπ⊥
∗ = span

{
X =

E1 − E2√
2

, Y =
E4 − E5√

2
, ξ

}
.

In addition, we have φ(V ) = −X and φ(W ) = −Y . Hence, we see that π is an
anti-invariant submersion admitting horizontal Reeb vector field.

Lemma 6.1. Let π be an anti-invariant submersion from a trans-Sasakian manifold
(M,φ, ξ, η, g) onto a Riemannian manifold (N, gN) admitting horizontal Reeb vector
field. Then, we have

TUφV = BTUV ,(6.1)

H∇UφV − αg(U, V )ξ = CTUV + φ∇̂UV ,(6.2)

∇̂V BX + TV CX = BH∇V X − αη(X)V ,(6.3)

TV BX +H∇V CX = CH∇V X + φTV X + βg(φV,X)ξ − βη(X)φV ,(6.4)

AXφV = BAXV ,(6.5)

H∇XφV = φ(V∇XV ) + CAXV + βg(φX, V )ξ ,(6.6)

V∇XBY +AXCY = BH∇XY − βη(Y )BX ,(6.7)

AXBY +H∇XCY = CH∇XY + φAXY + αg(X,Y )ξ(6.8)

−αη(Y )X − βη(Y )CX

where U, V ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ⊥
∗ ).

Proof. The proof is very similar to the proof of Lemma 5.1. So, we omit it. �
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Using (5.1), we have µ = φµ⊕ {ξ}.
Now, we suppose that V is vertical and X is horizontal vector field. Using above

relation and (2.2), we obtain

g(φV, CX) = 0.

From this last relation we have g(π∗φV, π∗CX) = 0 which implies that

TN = π∗(φkerπ∗)⊕ π∗(µ).(6.9)

From (2.2) and (5.1) we obtain following Lemma.

Lemma 6.2. Let π be an anti-invariant submersion admitting horizontal Reeb vector
field from a trans-Sasakian manifold M(φ, ξ, η, g) to a Riemannian manifold (N, gN ).
Then we have

BCX = 0, φ2X = φBX + C2X

for any X ∈ Γ(kerπ∗
⊥).

Lemma 6.3. Let π be an anti-invariant Riemannian submersion admitting horizon-
tal Reeb vector field from a trans-Sasakian manifold M(φ, ξ, η, g) to a Riemannian
manifold (N, gN). Then we have

BX = − 1

α
AXξ,(6.10)

TUξ = βU,(6.11)

g(AXξ, φU) = 0,(6.12)

g(∇Y AXξ, φU) = −g(AXξ, φAY U),(6.13)

g(∇XCY, φU) = −g(CY, φAXU)(6.14)

for X,Y ∈ Γ(kerπ∗
⊥) and U ∈ Γ(kerπ∗).

Proof. By the virtue of (3.8), (2.3) and (5.1) we have (6.10). Using (3.6) and (2.3),
we obtain (6.11). Since AXξ is vertical and φU is horizontal for X ∈ Γ(kerπ∗

⊥) and
U ∈ Γ(kerπ∗), we have (6.12). Now using (6.12) we get

g(∇Y AXξ, φU) = −g(AXξ,∇Y φU)

for X,Y ∈ Γ(kerπ∗
⊥) and U ∈ Γ(kerπ∗). Then using (3.7) and (2.2) we have

g(∇Y AXξ, φU) = −g(AXξ, φAY U)− g(AXξ, φ(V∇Y U))

Since φ(V∇Y U) ∈ Γ(kerπ∗
⊥), we obtain (6.13).

From (4.1) we get

g(CY, φU) = 0

0 = g(∇XCY , φU) + g(CY,∇XφU)

= g(∇XCY , φU) + g(CY, φ∇XU)

g(∇XCY, φU) = g(CY, φ(AXU)).

Hence we obtain (6.14). �
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7 Lagrangian submersions admitting vertical Reeb
vector field from trans-Sasakian manifolds

In this section, we shall study the integrability and totally geodesicness of the horizon-
tal distribution of Lagrangian submersions admitting vertical Reeb vector field from
trans-Sasakian manifolds. We first investigate the behavior of the O’Neill’s tensor T
of such a submersion. From Lemma 6.1, we obtain the following results.

Corollary 7.1. Let π be a Lagrangian submersion admitting vertical Reeb vector field
from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN).
Then, we have

TUφV − αg(U, V )ξ = φTUV − η(V )U ,(7.1)

TV φX = φTV X ,(7.2)

TV ξ = −αφV ,(7.3)

TξX = −αφX ,(7.4)

for U, V ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ⊥
∗ ).

Proof. For a Lagrangian submersion, we have CX = 0 for any X ∈ Γ(kerπ⊥
∗ ). Thus,

the assertions (7.1) and (7.2) follows from (5.2) and (5.5), respectively. (7.3) follows
from (2.3) and (3.5). The last assertion comes from (7.3). �

Remark 7.1. It is known from [24] that the fibers of a Riemannian submersion are
totally geodesic if and only if the O’Neill’s tensor T vanishes.

From Corollary 7.1, we see that the O’Neill’s tensor T cannot vanish. Thus, in
view of Remark 7.1, we immediately get the following result.

Theorem 7.2. Let π be a Lagrangian submersion admitting vertical Reeb vector field
from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN).
Then, the fibers of π cannot be totally geodesic.

Next, we give some results about the behaviour of the O’Neill’s tensor A of such
a submersion.

Corollary 7.3. Let π be a Lagrangian submersion admitting vertical Reeb vector field
from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN).
Then, we have

AXφV = φAXV − βη(V )φX ,(7.5)

AXφY = φAXY ,(7.6)

AXξ = βX ,(7.7)

for V ∈ Γ(kerπ∗) and X ∈ Γ(kerπ⊥
∗ ) .
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Proof. The assertions (7.5) and (7.6) follows from (5.6) and (5.10), respectively. The
last assertion follows from (2.3) and (3.7). �

Remark 7.2. For a Riemannian submersion, the integrability and totally geodesic-
ness of the horizontal distribution are equivalent to each other. This fact can be seen
from (3.4) and (3.8). In this case, the O’Neill’s tensor A vanishes.

One can see that the O’Neill’s tensor A cannot vanish for a such submersion from
(7.7). Thus, we get the following result.

Theorem 7.4. Let π be a Lagrangian submersion admitting vertical Reeb vector field
from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN).
Then, the horizontal distribution of π cannot be integrable.

Remark 7.3. A smooth map π : (M, g) → (N, gN) between Riemannian manifolds is
called a totally geodesic map if π∗ preserves parallel translation. Vilms [24] classified
totally geodesic Riemannian submersions and proved that a Riemannian submersion
π : (M, g) → (N, gN) is totally geodesic if and only if both O’Neill’s tensors T and A
vanish.

Thus, in view of Remark 7.3 from Theorem 7.2 or Theorem 7.4, it follows that the
following result.

Theorem 7.5. Let π be a Lagrangian submersion admitting vertical Reeb vector field
from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN).
Then, the submersion π cannot be a totally geodesic map.

Lastly, we give a necessary and sufficient condition for such submersions to be
harmonic.

Theorem 7.6. Let π be a Lagrangian submersion admitting vertical Reeb vector field
from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN).
Then π is harmonic if and only if traceφTV |kerπ∗ = 0 for V ∈ Γ(kerπ∗), where
φTV |kerπ∗ is the restriction of φTV to kerπ∗.

Proof. From [12], we know that π is harmonic if and only if π has minimal fibers.
Let {e1, ..., ek, ξ} be an orthonormal frame of kerπ∗. Thus π is harmonic if and only

if
k∑

i=1

Teiei + Tξξ = 0. Since Tξξ = 0, it follows that π is harmonic if and only if

k∑
i=1

Teiei = 0. Now, we calculate
k∑

i=1

Teiei. By orthonormal expansion, we can write

k∑
i=1

Teiei =
k∑

i=1

k∑
j=1

g(Teiei, φej)φej ,

where {φe1, ..., φek} is an orthonormal frame of φkerπ∗. Since Tei is skew-symmetric,
we obtain

k∑
i=1

Teiei = −
k∑

i,j=1

g(Teiφej , ei)φej .
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Here, from (7.1), we know

Teiφej = φTeiej + αg(ei, ej)ξ − η(ej)ei .

Thus, we get
k∑

i=1

Teiei = −
k∑

i,j=1

g(φTeiej , ei)φej ,

since both η(ej) = 0 and η(ei) = 0. Using (3.3), we arrive

(7.8)

k∑
i=1

Teiei = −
k∑

i,j=1

g(φTejei, ei)φej .

Since, φe1, ..., φek are linearly independent, from (7.8), we see that

(7.9)

k∑
i=1

Teiei = 0 ⇔
k∑

i,j=1

g(φTeiej , ei) = 0 .

It easy to see that,

(7.10)

k∑
i,j=1

g(φTejei, ei) = 0 ⇔
k∑

i=1

g(φTV ei, ei) = 0

for any V ∈ Γ(kerπ∗). On the other hand,

TraceφTV |kerπ∗ =
k∑

i=1

g(φTV ei, ei) + g(TV ξ, ξ)

and by (2.1) and (7.3),

(7.11) TraceφTV |kerπ∗ =
k∑

i=1

g(φTV ei, ei) .

Thus, by (7.9)∼(7.11), the assertion follows. �

Corollary 7.7. Let π be a Lagrangian submersion admitting vertical Reeb vector field
from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold (N, gN).
Then, for any U ∈ Γ(kerπ∗), we have

(7.12) g((∇ξT )UU, ξ) = 2(α2 − β2).

Proof. Let U ∈ Γ(kerπ∗) such that ∥U∥ = 1. Then, we have

(7.13) K(ξ, U) = g((∇ξT )UU, ξ) + ∥AξU∥2 − ∥TUξ∥2

from the equation {3} of Corollay 1 of [15], where K(ξ, V ) is the sectional curvature
of the plane section spanned by ξ and U. Here, by using (7.3) and (7.7), we get
∥TUξ∥2 = α2 and ∥AξU∥2 = β2, respectively. Thus, the right hand side of (7.13) is
equal to g((∇ξT )UU, ξ) + β2 − α2. On the other hand, by using the eq. (2.15) of [2],
we calculate K(ξ, U) = α2 − β2. Thus, the assertion follows from (7.13). �
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8 Lagrangian submersions admitting horizontal Reeb
vector field from trans-Sasakian manifolds

In this section, we study Lagrangian submersions admitting horizontal Reeb vector
field from trans-Sasakian manifolds onto Riemannian manifolds.

From Lemma 5.1, we obtain the following result.

Corollary 8.1. Let π be a Lagrangian submersion admitting horizontal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). Then, we have

TUφV = φTUV ,(8.1)

TV φX − φTV X = βg(φV,X)ξ − βη(X)φV ,(8.2)

TV ξ = βV .(8.3)

for U, V ∈ Γ(kerπ∗) and X ∈ Γ(kerπ⊥
∗ ).

Proof. Assertions (8.1) and (8.2) follows from (6.1) and (6.4), respectively. The last
assertion (8.3) follows from (2.3) and (3.6) or directly (6.11). �

From (8.3), we see that the O’Neill’s tensor T cannot vanish, so we have the
following result.

Theorem 8.2. Let π be a Lagrangian submersion admitting horizonal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). Then, the fibers of π cannot be totally geodesic.

Corollary 8.3. Let π be a Lagrangian submersion admitting horizontal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). Then, we have

AXφV = φAXV ,(8.4)

AXBY = φAXY + αg(X,Y )Hξ − αη(Y )X ,(8.5)

AξV = −αφV .(8.6)

AξX = −αφX .(8.7)

for V ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ⊥
∗ ).

Proof. Assertions (8.4) and (8.5) follows from (6.5) and (6.8), respectively. Third
assertion (8.6) follows from (2.3) and (3.7). The last one comes from (8.7). �
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From (8.4) and (8.5), it is easily seen that the O’Neill’s tensor A cannot vanish.
Thus, by Remark 7.2, we have the following result.

Theorem 8.4. Let π be a Lagrangian submersion admitting horizonal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). Then, the horizontal distribution of π cannot be integrable.

In view of Remark 7.3 from Theorem 8.2 or Theorem 8.4, we get the following
result.

Theorem 8.5. Let π be a Lagrangian submersion admitting horizontal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). Then, the submersion π cannot be a totally geodesic map.

Finally, we give a result concerning the harmonicity of such submersions.

Theorem 8.6. Let π be a Lagrangian submersion admitting horizontal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). Then π cannot be harmonic.

Proof. Let {e1, ..., ek} be an orthonormal frame of kerπ∗. Then {φe1, ..., φek, ξ} be
an orthonormal frame of kerπ⊥

∗ . Hence, we have

k∑
i=1

Teiei =
k∑

i,j=1

{
g(Teiei, φej)φej + g(Teiei, ξ)ξ

}
.

Using the skew-symmetricness of Tei and (8.1), we obtain

k∑
i=1

Teiei = −
k∑

i,j=1

{
g(φTeiej , ei)φej − g(Teiξ, ei)ξ

}
.

By (3.3) and (8.3), we get

k∑
i=1

Teiei = −
k∑

i,j=1

g(φTejei, ei)φej −
k∑

i=1

βg(ei, ei)ξ .

Upon straightforward calculation, we find

(8.8)

k∑
i=1

Teiei = −
k∑

i,j=1

g(φTejei, ei)φej − kβξ .

Now, we assume that π is harmonic. Then
k∑

i=1

Teiei = 0. From (8.8), it follows that

ξ = − 1

kβ

k∑
i,j=1

g(φTejei, ei)φej . Which is a contradiction, since {φe1, ..., φek, ξ} are

linearly independent. �
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Corollary 8.7. Let π be a Lagrangian submersion admitting horizontal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). Then, for any U ∈ Γ(kerπ∗), we have

(8.9) g((∇ξT )UU, ξ) = 0.

Proof. Let U ∈ Γ(kerπ∗) such that ∥U∥ = 1. Then, we have

(8.10) K(ξ, U) = g((∇ξT )UU, ξ) + ∥AξU∥2 − ∥TUξ∥2

from the equation {3} of Corollary 1 of [15], where K(ξ, V ) is the sectional curvature
of the plane section spanned by ξ and U. Here, by using (8.3) and (8.6), we get
∥TUξ∥2 = β2 and ∥AξU∥2 = α2, respectively. Thus, the right hand side of (8.10) is
equal to g((∇ξT )UU, ξ) + α2 − β2. On the other hand, by using the eq. (2.15) of [2],
we calculate K(ξ, U) = α2 − β2. Thus, the assertion follows from (8.10). �

Remark 8.1. Corollary 8.9 is a generalization of the Corollary 8.8 of [21].

Theorem 8.8. Let π be a Lagrangian submersion admitting horizontal Reeb vec-
tor field from a trans-Sasakian manifold (M,φ, ξ, η, g) onto a Riemannian manifold
(N, gN). If dim(kerπ∗) ≥ 2 and the fibers are totally umbilical, then we have

(8.11) H = −βξ ,

where H is the mean curvature tensor field of the fibers.

Proof. By the hypothesis, we may take any two vector fields U and V in kerπ∗ such
that g(U, V ) = 0 and ∥U∥ = 1. Since the fibers are totally umbilical, with (3.9), it
follows that

(8.12) TUV = 0 .

Using (8.1), the skew symmetry of T and φ, and (8.12), we have

g(H,φV ) = g(TUU,φV ) = −g(φTUV,U) = 0.

Since π is a Lagrangian submersion admitting horizontal Reeb vector field, it follows
that H = g(H, ξ)ξ. But, using (8.3), we obtain g(H, ξ) = g(TUU, ξ) = −g(TUξ, U) =
−β, which complete the proof. �
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