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Abstract 

This paper summarizes the results of experimental research and prediction model focused on 

determination of the behavior of pull-out performance limits of what embedded into currently 

the most widespread concrete type of Turkey as C25/30. Rebars having 14, 16 and 18 mm 

diameters have been selected as the anchor rod in this study. Epoxy based three component 

chemical adhesive has been used for the connection between concrete and anchor bar. The depth 

of holes was in the range of 140 - 220 mm which had been selected various for  14, 16 and 18 

mm  bar diameters. The effect of the anchor depths, bar diameters and reinforcement diameter 
on the pull-out capacity of adhesive anchors is product dependent. Moreover,  an attempt to 

predict the pull-out capacity of chemical anchors embedded into concrete using artificial neural 

networks (ANNs) is presented. The problem is proposed to network models by means of three 

inputs and one output parameter. A multilayered feed-forward neural network trained with the 

different algorithm is constructed using 3 design variables as network inputs and the pull-out 

strength of adhesive anchors as the only output. Experimental results showed that increasing 

the anchor diameter and the depths of hole have increased pull-out performance of anchors. The 

best algorithm for collapse load of concrete is the Levenberg-Marquardt backpropagation with 

R2 of 0.9837. The results indicated that ANNs are useful technique for predicting the pull-out 

capacity of adhesive anchors. 

 

Keywords: Anchor; pull-out performance; rebar diameter; depths of holes; artificial neural 

networks. 

1. Introduction 



 

The researches and applications of an anchor embedded in a hardened cementitious material 

such as concrete have been carried out for many decades. For the convenience of the anchors 

embedded more efficiently in the concrete, researchers began to adopt post-installation for 

bonding the reinforcements into the concrete. General operations are drilling a hole in hardened 

concrete and installing a steel rod into the concrete with adhesive or cement grout. 

Chemical anchors are also getting more frequently used to connect structural elements. Anchors 

that are used to provide the connection between two different elements can be categorized under 

two categories as cast-in-place and post-installed anchorages. Post-installed anchorages could 

be manufactured using different methods such as mechanical, grout or chemical. Recently, 

more researches have focused on adhesive bonded anchors [1-3]. The variables investigated 

included the condition of the drilled hole, concrete compressive strength, aggregate type, 

adhesive curing period and loading at elevated temperature. Cook et al. analyzed the behaviors 

of single adhesive anchors and single headed or unheaded grouted anchors under tensile load 

in concrete [4-6]. General failure modes of these anchorage systems can be summarized as 

pullout of a concrete cone, debonding at anchor–adhesive/grout or concrete–adhesive/grout 

interface, fracture of anchor, and combination of some of these failure modes. Then several 

design models were recommended taking into account of all the possible failure modes. 

Moreover, for an adhesive anchor installed into a damp, wet and uncleaned hole, the bond 

strength between anchor and concrete was generally reduced [7]. An adhesive anchor is 

installed using a rebar or threaded rod inserted in a drilled hole in hardened concrete using a 

polymer-based bonding agent including epoxies, vinylesters and polyesters. Typically, a 

grouted anchor isa threaded rod, headed bolt or deformed rebar inserted in a drilled hole filled 

with a cementitious or polymer grout. In this case, the diameter of the predrilled hole is at least 

150% larger than that of the fastener [8]. 

 

The bond strength of rebars is a function of the geometric and material properties of the concrete 

member and the rebars. Several factors influence the pull-out performance of anhors. The most 

important of them are concrete compressive strength, splice length, the relative rib area (the 

ratio of projected rib area normal to bar axis to the product of the nominal bar perimeter and 

the center-to-center rib spacing), minimum concrete cover defined as the smallest of clear 

concrete covers in bottom and/or sides or 12 of the clear spacing between bars, the amount of 

transverse steel area to spacing ratio and the splice bar size illustrated as ratio of the area of the 

splice bar to the effective cross section of the beam [9]. Tepfers [10] illustrated that the bond 



strength increases as cover and bar spacing increase. The mode of failure also depends on cover 

and bar spacing. For large cover and bar spacing, it is possible to obtain a pull-out failure, but 

for smaller ones, a splitting tensile failure occurs resulting in lower bond strength. 

 

The approach based on the assumption of separated failure modes generally defines the 

resistance of an anchor for three load-bearing capacity values. As shown in Fig. 1a, the first 

failure mode is the tensile failure of the steel anchor element. This failure is clearly defined by 

the area of the shank of the rebar. The second failure mode is defined as a full concrete failure. 

This failure typically takes the form of a breakout cone (Fig. 1b). It is usually described as being 

dependent on concrete strength and the anchorage length. The third failure mode is the 

extraction of the rebar from the concrete. This can occur via the failure of the concrete–glue 

interface, the glue–steel interface or via the failure of the glue itself (Fig. 1c). Usually in design 

methods, the definition of the pull-out resistance for this failure type is related to one of the 

surfaces of the interface. This is possible because the thickness of the glue layer is small (several 

millimetres). This failure mode is termed ‘bond failure. 

 

Fig. 1. Separated failure modes used in design methods: (a) tensile failure of the steel anchor 

bolt, (b) full concrete failure, and (c) bond failure: extraction of the steel bolt from the concrete 

[11]. 

 

Their main function is to transfer normal loads (tension and compression) and possible shear 

loads according to efforts at the base of the structure. The three main anchoring systems are the 

straight rod, the hooked rod and the headed rod. The tensile load is transferred through a bond 

between the steel rod and the concrete and/or abutment of the anchor plate or the hook on 

concrete. Load capacities of the mechanisms depend on the type and dimensions of anchor used. 

Under tension, the three main failure mechanisms are the breaking of the rod, the sliding of the 

rod and cone-shaped concrete breakout [12]. 

 

The artificial neural networks solve very complex problems with the help of interconnected 

computing elements. Basically, the processing elements of a neural network are similar to the 

neurons in the brain, which consist of many simple computational elements arranged in layers. 

In recent years, the ANNs and other models have been extended extensively and applied to 

many civil engineering applications such as epoxy-adhesive anchor systems. Similar results 

were also found in the experimental and numerical simulation studies by Li et al. [13]. James 



et al. developed an approximate expression to predict the ultimate tensile capacity of the epoxy-

adhesive anchors based on the analysis of linear and nonlinear finite element method [14]. 

Bickel and Shaikh utilized two methods with proper adjustments to predict the shear capacity 

of single adhesive anchors [15]. Sakla and Ashour introduced artificial neural networks into 

predicting the tensile capacity of single adhesive anchors and found that the tensile capacity is 

linearly proportional to the embedment length [8]. Moreover, Beard and Lowe [16] adopted the 

ultrasonic guided waves to successfully inspect the maximum anchor length for a grouted 

anchor. 

 

The aim of this study is the investigation of that increasing the anchor diameter and the depths 

of hole on the performance of pull-out what embedded into currently the most widespread 

concrete type of Turkey. Furthermore, ANN model is constructed to predict the pull-out 

performance of chemical anchors embedded into concrete. 

 

2. Experimental study 
To measure the ultimate load for each anchor, a pullout test was performed to the specimens. 

Many strengthening applications are performed on buildings that are made of widespread 

concrete strength type of a country in order to better represent the practice, the anchors have 

been embedded in concrete elements. Preliminary data indicated that most concrete existing in 

Turkey has a compressive strength of 25 MPa for 15x15x15 cm cubic specimens and anchors 

were embedded in the concrete in scope of the study. Other parameters that have been used in 

this study are the anchor bar diameter and the anchor depth. In this study, rebars of three 

different diameters, namely 14, 16 and 18 mm have been embedded in depths that are 140, 150, 

160, 170, 180, 190, 200, 210 and 220 mm as can be seen in Table 1. A total of 30 test specimens 

have been produced. Each data point represents the average of five measurements. The 

manufactured test specimens have been cured under laboratory conditions. Following this, the 

holes where the anchor bars will be embedded have been drilled. The holes were cleaned by 

using pressurized air from an oil-free compressor. The anchor bars have been embedded in the 

concrete blocks using epoxy resin and necessary precautions have been taken in order to the 

bars not to move until the epoxy has gained strength. The embedded anchors were covered by 

a loading block.  Testing procedure can be seen in Fig.2a-b-c.  

 

Table 1. Anchor depth, anchor diameter and rebar diameter of the specimens. 



 

Fig.2. (a) Drilling, (b) cleaning and (c) embedding of the rebar specimens. 

 

Pattex CF 900 Epoxy was used in this study. Mix proportions and mechanical properties of the 

epoxy are listed in Table 2. 

 

Table 2. Mechanical properties and mix proportions and of the epoxy. 

 

After emmedding rebar specimens on the curtain wall the bar specimens have been loaded by 

a hydraulic test apparatus on the curtain wall. Fig.3 shows pull-out of anchor rebar hydraulic 

test apparatus. 

 

Fig.3. Hydraulic test apparatus of anchor rebar. 

 

3. Test results 
Fig. 4, Fig. 5 and Fig.6 show the results obtained from the anchor pull-out measurements of all 

the specimens emmebbed into concrete. It is shown in the Fig. 4 that the rebar of 14 mm of 

diameter has various embedment depths in the range of 140-180 mm. The pull-out strength 

capacity has been observed to increase with increasing diameters as it was expected. However, 

with increasing embedment depth, a significant change could be observed in capacity of the 

specimens. Pull-out strength of the specimens increases with an increasing the depths of hole 

and there is a notable reduction in pull-out strength of the specimens when embedment diameter 

decrease from 22 mm to 20 mm. The rebar specimen has 14 mm diameter and 180 mm 

embedment depth showed pull-out strength performance 18.54 %  more than 150 mm 

embedment depth. Caliskan et al. investigated shear strength of epoxy anchors embedded into 

low strength concrete and found similar test results [3]. 

. 

Fig.4. Test results of pull-out strength of the specimens have 14 mm rebar diameter.   

 

Fig. 5 shows that the rebar of 16 mm of diameter has various embedment depths in the range 

of 160-200 mm. The pull-out strength capacity has been observed to increase with increasing 

diameters.  However, with increasing embedment depth, a significant change could be observed 

in capacity of the specimens. Pull-out strength of the specimens increases with an increasing 



the embedment depth and there is a notable reduction in pull-out strength of the specimens 

when embedment diameter decrease from 24 mm to 22 mm. The rebar specimen has 16 mm 

diameter and 200 mm embedment depth showed pull-out strength performance 18.37 %  more 

than 160 mm embedment depth. Xu et al. modelled of anchor bolt pullout in concrete based on 

a heterogeneous assumption in this context made tests for influence of the embedded depth on 

the peak pullout load and found similar test results [17]. It can be seen in that research with the 

increase of the embedded length, the peak pullout load increases.   

Fig.5. Test results of pull-out strength of the specimens have 16 mm rebar diameter.   

 

Fig.6. Test results of pull-out strength of the specimens have 18 mm rebar diameter.   

 

Fig. 6 shows that the rebar of 18 mm of diameter has various embedment depths in the range 

of 180-220 mm. Pull-out strength of the specimens increases with an increasing the embedment 

depth and there is a notable reduction in pull-out strength of the specimens when embedment 

diameter decrease from 26 mm to 24 mm. The rebar specimen has 18 mm diameter and 220 

mm embedment depth showed pull-out strength performance 11.69 %  more than 180 mm 

embedment depth.  

 

4. Artificial neural network model for prediction of experimental results 
ANN can exhibit a surprising number of human brain characteristics [18-26]. The fundamental 

concept of neural networks is the structure of the information processing system [27, 28]. They 

are consisting of a large number of simple processing elements called as neurons. A schematic 

diagram for an artificial neuron model is given in Fig. 7. 

Fig. 7. Artificial neuron model. 

Let X=(X1, X2… Xn ) represent the n input applied to the neuron. Where Wj represents the 

weight for input Xj and b is a bias, then the output of the neuron is given by Eq. 1.  These 

neurons are connected with connection link. Each link has a weight that is multiplied by 

transmitted signal in network. Each neuron has an activation function to determine the output. 

There are many kinds of activation functions. Usually nonlinear activation functions such as 

sigmoid, step are used. ANNs are trained by experience, when an unknown input is applied to 

the network it can generalize from past experiences and produce a new result [29-32]. 







m
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Artifical neural networks are systems that are deliberately constructed to make use of some 

organizational principles resembling those of the human brain [29-32]. They represent the 

promising new generation of information processing systems. 

When designing an ANN model, a number of considerations must be taken into account. At 

first the suitable structure of the ANN model must be chosen. Then, the activation function need 

to be determined. The number of layers and the number of units in each layer must be chosen. 

Generally desired model consists of a number of layers. The most general model assumes 

complete interconnections between all units. These connections can be bidirectional or 

unidirectional. ANN can create its own organization or representation of the information it 

receives during learning time [28-33]. There are many kind of ANN structure. One of these is 

multilayer feed forward ANN and is shown in Fig. 8. 

Fig. 8. Multilayer feed forward neural network structure. 

In this study, the problem is proposed to network models by means of three inputs and one 

output parameter. The parameters such as reinforcement diameter, anchor depth, anchor 

diameter were selected as input variables. The model output variables were the collapse load. 

A data set including 30 data specimens obtained from experimental studies were used for 

artificial neural networks. The data were normalized by dividing with max values. ANN 

architecture used for this study is given in Fig. 9.  

Fig. 9. ANN architecture. 

Some ANN algorithms were used just learning in this study such as the BFGS Quasi-Newton 

backpropagation, the Powell-Beale Conjugate gradient backpropagation, the Fletcher-Powell 

conjugate gradient backpropagation, the Levenberg-Marquardt backpropagation, the One Step 

Secant backpropagation, the Resilient backpropagation, the Scaled conjugate gradient 

backpropagation. The computer program was performed under MATLAB software using the 

neural network toolbox. In the training, the number of neuron on the hidden layer changed to 

find best results. The best result for the BFGS quasi-Newton backpropagation was obtained 

from the seventeen neurons. The best result for the Powell-Beale conjugate gradient 

backpropagation algorithm was obtained from the eight neurons. The best result for the 

Fletcher-Powell conjugate gradient backpropagation was obtained from the eleven neurons. 



The best result for the Levenberg-Marquardt backpropagation was obtained from the five 

neurons. The best result for the One step secant backpropagation was obtained from the 

eighteen neurons. The best result for the Resilient backpropagation was obtained from the 

twenty-three neurons. The best result for the Scaled conjugate gradient backpropagation was 

obtained from the fourteen neurons. A data set including 30 data specimens obtained from 

experimental studies were used for artificial neural networks. From these, 15 data patterns were 

used for training the network, and the remaining 15 patterns were randomly selected and used 

as the test data set. Fig. 10-16 present the measured collapse load and the predicted collapse 

loads by ANN model with R2 coefficients.  As it is visible in Figs. 10-23, the values obtained 

from the ANN models are very close to the experimental results. Furthermore, All of R2 values 

show that the proposed ANN models are suitable and can predict collapse load of concrete of 

the experimental values. This can be also observed in the other articles related to predicting 

concrete properties [26-29]. Fig.12 shows that the best algorithm for collapse load of concrete 

is the Levenberg-Marquardt backpropagation with R2 of 0.9837. The training performance 

during the training process is given in Fig. 17-23 where the variation of mean-square error with 

training epochs is illustrated. Artificial neural networks are capable of learning and modeling 

using the data obtained from experiments. This makes artificial neural networks a powerful tool 

for solving some of the complicated civil engineering problems [33].  

Figure 10. Linear relationship between measured and predicted compressive strengths for the 

BFGS quasi-Newton backpropagation. 

Figure 11. Linear relationship between measured and predicted splitting tensile strengths for 

the Powell-Beale conjugate gradient backpropagation. 

Fig. 12. Linear relationship between measured and predicted compressive strengths for the 

Levenberg-Marquardt backpropagation. 

Figure 13. Linear relationship between measured and predicted compressive strengths for the 

Fletcher-Powell conjugate gradient backpropagation. 

Fig. 14. Linear relationship between measured and predicted splitting tensile strengths for the 

One step secant backpropagation. 

Figure 15. Linear relationship between measured and predicted splitting tensile strengths for 
the Resilient backpropagation. 

Figure 16. Linear relationship between measured and predicted compressive strengths for the 

Scaled conjugate gradient backpropagation. 



Figure 17. Training performance for the BFGS quasi-Newton backpropagation. 

Figure 18.Training performance for the Powell-Beale conjugate gradient backpropagation. 

Figure 19.Training performance for the Fletcher-Powell conjugate gradient backpropagation. 

Figure 20. Training performance for the Levenberg-Marquardt backpropagation. 

Figure 21. Training performance for the One step secant backpropagation. 

Figure 22.Training performance for the Resilient backpropagation. 

Figure 23.Training performance for the Scaled conjugate gradient backpropagation. 

5. Conclusions 

In this study, the pull-out strength capacity has been observed to increase with increasing 

diameters. An ANN prediction model for pull-out capacity of chemical anchors embedded into 

concrete was devised. From this laboratory and computer work the following conclusions were 

made: 

 A significant change observed in pull-out capacity of the specimens with increasing 

embedment depth. Pull-out strength of the specimens increases with an increasing 

the depths of hole and there is a notable reduction in pull-out strength of the 

specimens when embedment diameter decrease from 26 mm to 20 mm. 

 The rebar specimen has 14 mm diameter and 180 mm embedment depth showed 

pull-out strength performance 18.54 %  more than 150 mm embedment depth. 

Moreover, the specimen has 16 mm rebar diameter and 200 mm embedment depth 

increased pull-out strength performance 18.37 %  more than 160 mm embedment 

depth. Furthermore, the rebar specimen has 18 mm diameter and 220 mm 

embedment depth improved pull-out strength performance 11.69 %  more than 180 

mm embedment depth.  

 All of R2 values show that the proposed ANN models are suitable and can predict 

collapse load of concrete of the experimental values. 

 The best algorithm for collapse load of concrete is the Levenberg-Marquardt 

backpropagation with R2 of 0.9837. 
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Table 1. Anchor depth, anchor diameter and rebar diameter of the specimens. 

Group 
Number 

Rebar 
Diameter 

Anchor 
Diameter 

Anchor 
Depth 

(mm) (mm) (mm) 
M1 14 20 140 
M2 14 20 150 
M3 14 20 160 
M4 14 20 170 
M5 14 20 180 
M6 14 22 140 



M7 14 22 150 
M8 14 22 160 
M9 14 22 170 
M10 14 22 180 
M11 16 22 160 
M12 16 22 170 
M13 16 22 180 
M14 16 22 190 
M15 16 22 200 
M16 16 24 160 
M17 16 24 170 
M18 16 24 180 
M19 16 24 190 
M20 16 24 200 
M21 18 24 180 
M22 18 24 190 
M23 18 24 200 
M24 18 24 210 
M25 18 24 220 
M26 18 26 180 
M27 18 26 190 
M28 18 26 200 
M29 18 26 210 
M30 18 26 220 

 

 

 

 

 

 

 

Table 2. Mechanical properties and mix proportions and of the epoxy. 

Compressive strength (MPa) 56 

Flexural strength (MPa)  16 

Modulus of elasticity 3034 

Number of component 2 

Mixture density (g/cm3, 20 oC) 1.65 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Separated failure modes used in design methods: (a) tensile failure of the steel anchor 

bolt, (b) full concrete failure, and (c) bond failure: extraction of the steel bolt from the concrete 

[11]. 



 
(a)                                                                      (b) 

 
                                                                          (c) 

Fig.2. (a) Drilling, (b) cleaning and (c) embedding of the rebar specimens. 

 



 
Fig.3. Hydraulic test apparatus of anchor rebar. 

 

 
Fig.4. Test results of pull-out strength of the specimens have 14 mm rebar diameter.   
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Fig.5. Test results of pull-out strength of the specimens have 16 mm rebar diameter.   

 

 
Fig.6. Test results of pull-out strength of the specimens have 18 mm rebar diameter.   
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Fig. 7. Artificial neuron model 
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Fig. 8. Multilayer feed forward neural network structure. 

 

Fig. 9. ANN architecture. 



 

Fig. 10. Linear relationship between measured and predicted compressive strengths for the 

BFGS quasi-Newton backpropagation.

 

Fig. 11. Linear relationship between measured and predicted splitting tensile strengths for the 

Powell-Beale conjugate gradient backpropagation. 
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Fig. 12. Linear relationship between measured and predicted compressive strengths for the 

Levenberg-Marquardt backpropagation. 

 

Figure 13. Linear relationship between measured and predicted compressive strengths for the 

Fletcher-Powell conjugate gradient backpropagation. 
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Fig. 14. Linear relationship between measured and predicted splitting tensile strengths for the 

One step secant backpropagation. 
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Fig. 15. Linear relationship between measured and predicted compressive strengths for the 

Resilient backpropagation. 

 

Fig. 16. Linear relationship between measured and predicted splitting tensile strengths for the 

the Scaled conjugate gradient backpropagation. 
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Figure 17. Training performance for the BFGS quasi-Newton backpropagation. 

 

Figure 18.Training performance for the Powell-Beale conjugate gradient backpropagation. 
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Figure 19.Training performance for the Fletcher-Powell conjugate gradient backpropagation. 

 

Figure 20. Training performance for the Levenberg-Marquardt backpropagation. 
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Figure 21. Training performance for the One step secant backpropagation. 

 

Figure 22.Training performance for the Resilient backpropagation. 
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Figure 23.Training performance for the Scaled conjugate gradient backpropagation. 

0 50 100 150 200 250 300 350 400
10-8

10
-6

10
-4

10-2

10
0

443 Epochs

Tr
ai

ni
ng

-B
lu

e 
 G

oa
l-B

la
ck

Performance is 9.99498e-008, Goal is 1e-007


