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Abstract

With the help of statistical software programs, such as AMOS, Lisrel, R, Matlab, and many equivalents, most of the
complicated research models have become more computable and easily understandable. Even the most complicated
and complex models with various relationships can be easily computed with the help of software. Although with slight
differences, outputs are consistent, and tables are mostly comprehensible. However, with the increasing curiosity and
amount of knowledge about the research methodology, these simple looking outputs start to become more complicated
and deeper. Even though aforementioned statements seem contradictory, what we imply here is very sound to a mid-
level researcher because, as knowledge and understanding of statistics deepens, questions and doubts about from
where, how, and why these numbers are calculated increase. Curiosity about the fit indices, chi-square and degrees of
freedom, modification indices, covariances, and residuals begin to arouse.

In this review and commentary, we focus on the infamous CMIN (or chi-square), different model definitions, and
calculation of fit indices by the help of these models while avoiding statistical jargon as much as possible. With the aim
of putting an end to a decade long debate, when and how to use which fit indices, what they really indicate, and which
numbers refer to good or bad fit is also discussed.
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Introduction

In order to be able to comprehend structural equation modelling, confirmatory
factor analysis, and fit concepts, some literature and definitions are necessary to
clarify. First of all, we have to begin with the definition of the models mentioned in
the software. These are most of the time confusing, not only because of their nature
but because they are never really described anywhere in the process. Secondly, the
estimation methodology is to be defined. Most SEM users, no matter what software
they use, are accustomed to the “Maximum Likelihood Estimation,” but a great
deal of these researchers have no idea what it is and what it does. Finally, there
are several concepts which need to be clarified before discussing fit of the models.
Some of these concepts are CMIN, Chi-Square, Log-Likelihood (see also Maximum
Likelihood), C and F values, NPAR, p and P, fit and index, and PRATIO. Despite
sounding familiar, most of the time they are misleading, confusing, bewildering, and
even confounding. We see them and think we know them, but we never think about
what they really are or where they come from. Alongside the discussion of several
concepts and terminology, the necessary values and key-points will be discussed
throughout the paper.

Models Definitions

Despite slight naming differences among statistical software, there are three main
models essential for the calculation of SEM and CFA. First is the one that researchers
want to investigate, which is called “default model,” “structural model,” or “measurement
model”. Following is the one in which every measured variable is accounted as
independent of each other and any latent variable. This is called “independence
model;” it also is the “baseline/null model” for CFA and SEM — we will discuss this
confusion further below. Final is “saturated model” in which all variables covary with
every each other.

Since its name will be mentioned several times here, before we begin defining
models, an introduction to a fairly common concept called parsimony is also essential.
Parsimony means simplicity, so the parsimonious models are simple models with
less parameters to be estimated. Of course, parsimony of a model can only be judged
relatively, often comparing nested models.

Nested models are the models in which one of the models contains all the variables,
parameters, and interactions of the other and at least one extra term (parameter, constraint
e.g.). Extended model is called the full (or complete) model, and abridged is called
the restricted (or reduced) model; hence, saturated, default, and independent models
are all nested models, where saturated is the full model and default is the restricted
version of it (so is the independent).
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Besides, there is a ratio called PRATIO (parsimony ratio) which compares the degrees
of freedom for default model (df) and independence model (df). Its formula is simply
PRATIO=d{/df. This ratio is also used to calculate “Parsimony adjusted measures of
fit” or namely PNFI and PCFI. These will be discussed later in this paper.

Aforementioned models are:

Saturated model: This is the fully explanatory model in which per every degree of
freedom, there are as many parameter estimates; therefore, df =0. That is to say every
variable in the model co-varies with every each other. This is the most general model
possible. Goodness of fit measures are “1.0” for this model. Besides, some measures
such as RMSEA cannot be computed for saturated model, and because saturated
model, by its nature, is the most un-parsimonious model possible, parsimony-based
fit measures (PNFI, PGFI etc.) will be 0. It is an inane and illogical model in the sense
that it is guaranteed to fit perfectly to any set of data collected. Any other model in the
same research (that also implies the same dataset) is a nested (constrained) version
of the saturated model.

Null or baseline model (AKA independence model in AMOS and some other
software): The comparison model is frequently used as the “baseline model,” differences
from which must be significant if a proposed structural model (the one with straight
arrows connecting some latent variables — also called the default model in AMOS) is
to be investigated further; however, the term “baseline model” implies comparison
with an alternative that is more complex than a no-effect hypothesis. The terms “naive
model” and “null model” better indicate the kinds of models that researchers have
used as baselines so far (Schwab, A., & Starbuck, W. H., 2013).

In the SEM or CFA baseline model, the covariances in the covariance matrix among
the latent variables are all assumed to be zero. Despite its official name, AMOS and
several other statistical software name “null/baseline” model as “independence model”. It
makes sense because the independence model is the one which assumes all relationships
among measured variables are “0.” Independence model is an uncorrelated variables
model, and for computation, many fit measures, such as TLI=NNF]I, RFI, IFI, NFI, CFI,
PNFI, and PCFI, necessitate a “null/baseline” model in comparison with researchers’
measurement model. This model assumes that variables or latent factors of a construct
are uncorrelated. Unlike the saturated model which have a parsimony ratio of “0,” the
independence model has a parsimony ratio of “1.”! Most of the fit measures will have
a value of “0” since this is the worst model possible, whether parsimony-adjusted or
not. In rare occasions, some fit indices, such as RMSEA and GFI, may have a non-zero
value depending on the data (Schermelleh-Engel, K., et.al., 2003).

1 Please refer to PRATIO in this paper.
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Default (structural or measurement) model: This is the researcher’s measurement
or structural model (AMOS calls it the “default model”). In comparison to saturated
model, this model is always more parsimonious, and it is always better fitting than the
independence model when compared using fit indices. Thus, the default model will
have a goodness of fit between the perfect fitting “saturated model” and worst possible
model with lowest explanatory power, “the independence model.”

Estimation and Maximum Likelihood Estimation

Even though there is no simple way to describe Maximum Likelihood Estimation
(MLE), it is essential to say this method is the default for many statistical software
in order to be able to calculate many of the fit indices. Its complexity should not be
taken for granted; however, some concepts about the estimation process and routines
can be elaborated.

There are several estimation techniques, most of them perform one of three things
(Templin, J. 2015):

1. Minimize some function: If the estimation process includes the word “least” in its
name, then minimization should be expected. Most of these techniques minimize
the squares of the error terms (or std. deviations). Types of least squares techniques
include ordinary, generalized, weighted, WLSMYV, iteratively re-weighted, and
diagonally weighted. It is usually conducted as a last resort.

2. Maximize some function: Mostly, this gold standard of estimation techniques comes
with the name “maximum” in it, such as maximum likelihood, residual maximum
likelihood, and robust maximum likelihood.

3. Usage of simulation for sampling from data: These use recent advanced techniques
of re-sampling through the help of recent simulation methods. Some of these
include Gibbs sampling, Metropolis-Hastings algorithm, Monte Carlo simulation,
and Bayesian Markov Chain Monte Carlo. These are typically used for complex
models where maximum likelihood is not applicable or in which some prior values
are necessary.

Simply;

(1) MLE is a procedure to determine best model parameters (reality) that fit the
given data with maximizing log-likelihood function to estimate parameters. The
formulas here, while being quite mathematical, are familiar to most statisticians’.
But one can immediately ask: “Why not likelihood function but log-likelihood?”.
Simply put, mathematically its asymptotes meet at the same values, and it is way
easier to find a maximum of log-likelihood since it includes “sums” rather than
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“products” as likelihood function does. Additionally, one can easily understand
that maximization of products is harder than sums. Since we need derivatives
of functions to find out asymptotes, it is easier to take derivatives of sums.

(2) MLE also helps compare different models with the same data using some
information criteria. This is mathematically even more advanced. There are
formulas called information theory techniques. The most common one is
Kullback-Leibler information criterion, which quantifies the distance between
two given models. Since depending on full probability density functions, it is very
hard to calculate (Burnham, K. P., & Anderson, D. R., 2001). Japanese statistician
Hirotugu Akaike (1987) proved that K-L information could be estimated based
on maximum log-likelihood and created AIC (Akaike Information Criterion).
Its formula is:

AIC = -2(In(ex)) + 2K

It actually is “-2” times log-likelihood added by “2” times the number of parameters.
Both log-likelihood and AIC are only meaningful when compared to other models with
the same data (they are relative not absolute). They have no meaning by themselves,
so the higher or lower the values mean nothing without comparison. Moreover, if
you are comparing two “bad” models, they can only mean one is better than the other
but cannot say anything about how bad/good they are. AMOS reports several similar
model comparison values such as AIC, BCC, BIC, CAIC, ECVI, and MCVI. Keep
in mind that these values are only for models’ comparison and relative . They do not
indicate a fit for models. Simply put, if you are to compare two nested models? among
each other, they are handy. If not, just ignore them. Complicated, poorly fitting models
get high scores. For comparison purposes, this means the lower the values the better’.

Some Other “sine qua non” Concepts

Since we now are aware of maximum likelihood estimation and log-likelihoods,
we can talk about chi-square () values calculated per model in AMOS. It is named
as “CMIN” which allegedly stands for “chi-square minimum.” If one is accustomed
to basic statistics, then he or she should also know about chi-square test and that it
stands for “independence.” This means, without terminologically using definition of
hypotheses, if a y* value is statistically significant (p<0.05) then these two observations
are “independent” from each other. In CFA and SEM, it is potentially unwanted. We
want our measurement model (default model in AMOS) to be “not independent” from
the data of observations.

2 Two models are nested if one contains all the terms of the other, and at least one extra term.
3 Also see the “Model comparison” section below.
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The problem is that it is not easy to comprehend how CMIN is calculated. As one
googles chi-square, he or she will most probably end up with what we call “Pearson
Chi-Square” formula saying something like, “If you subtract expected values from
observed values and square them, then divide them by expected values, you end up
with chi-squared for each observation.” If you add them all, you find a summed chi-
square value. This is what confuses most people because we have observed values on
one side of the arrow since factors are unobserved (latent) variables.

Moreover, this CMIN is referred to as a fit index; therefore, it should be comparing
two models, not observations. What are these two models? To evaluate the fit of the
factor model, its “function of log-likelihood value™ has to be compared to that of some
less constrained model, such as the saturated model. The chi-square test compares the
model (default model) to the saturated model (it should fit about the same). Many fit
indices compare the model to the null/baseline model instead (baseline model should
fit much worse than measurement model). AMOS uses function of log-likelihood to
report CMIN. Chi-square is calculated through multiplying the number of samples and
F,, (function of ML); therefore, C=n(F, ). C value is derived from F, and this value
is also called “minimum discrepancy function.”

As discussed earlier in the model definitions section, saturated and default models
are nested models, where saturated is the full and default is the restricted. Difference
between function of log-likelihood of two nested models also gives the chi-square. If
one simply calculates function of log-likelihood for saturated and default models and
takes the difference, they end up with the chi-square for default model. The number
of parameters to be estimated are also subtracted (of course, saturated model has more
NPAR) to end up with “df” for default model. Eventually, chi-square distribution table
can be used to calculate probability and test the null hypothesis of independence.

The number of parameters to be estimated defines the complexity of the model.
Models with many parameters to estimate are called complex. Less parameters means
the model is simple. In AMOS and other programs, number of distinct parameters
to be estimated is called “NPAR.” The word “distinct” is also important here. For
instance, if two or more parameters are required to be equal to each other, then these
count as one, not two.

This leads us to another important concept in statistics, degrees of freedom (df).
Degrees of freedom is the NPAR (q) subtracted from the number of sample moments
(p), so the formula is (df=p-q).

One of the main fit measures (perhaps it should be called “THE” fit measure) is
CMIN. It is the minimum value of C of the discrepancy, otherwise called chi-Square
of likelihood ratio test. Since chi-square statistics all require a significance value,
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“p value” is marked as “P” for testing the hypotheses that the model fits perfectly in
population. As discussed earlier in this paper, it is the discrepancy between perfectly
fit model (saturated model) and default model.

Increase in NPAR (also implying decrease in df), declines log-likelihood for the
nested models using the same sample. This means, saturated model always has lower
value for function of log-likelihood. Sample size increases the likelihood functions;
despite the sample size being the same in the nested models, this does not mean the
difference stays the same with smaller sample sizes. Chi-square test value increases as
the sample size increases, and this makes the values significant since the (df) stays the
same. It sounds complicated, but think of it as a test statistic of independence getting
larger as the number of samples increases, which makes it more significant at a time.
If two models (in our case, it is saturated and default models) are independent of each
other, then they simply are not fit to each other. This is true but not necessarily correct,
and this is the reason that we need more indices to be able to look at.

Here are some quotes directly from respected statisticians/researchers:

“The power of the test to detect an underlying disagreement between theory
and data is controlled largely by the size of the sample. With a small sample
an alternative hypothesis which departs violently from the null hypothesis
may still have a small probability of yielding a significant value of. In a very
large sample, small and unimportant departures from the null hypothesis are
almost certain to be detected.” (Cochran, 1952)

“If the sample is small, then the test will show that the data are ‘not
significantly different from’ quite a wide range of very different theories,
while if the sample is large, the test will show that the data are significantly
different from those expected on a given theory even though the difference
may be so very slight as to be negligible or unimportant on other criteria.”
(Gulliksen and Tukey, 1958, pp. 95-96)

“Such a hypothesis [of perfect fit] may be quite unrealistic in most empirical
work with test data. If a sufficiently large sample were obtained this statistic
would, no doubt, indicate that any such non-trivial hypothesis is statistically
untenable.” (Joreskog, 1969, p. 200)

“Do they mean that we should limit the sample size? Despite they sound in that
manner, one should also know that “Significant properties of maximum likelihood (ML)
estimate are consistency, normality, and efficiency. However, it has been proven that
these properties are valid when the sample size approaches infinity. Many researches
warn that a behavior of ML estimator working with the small sample size is largely
unknown. (Psutka, J. V. and Psutka J., 2015)”
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One logical way to assess fit is to find the discrepancy value (CMIN) per degrees
of freedom, given that it tends to increase with number of sample moments. CMIN/
df value can give the researcher an absolute value for fit. Arguments begin just here,
because various researchers have suggested various acceptable values for this value.
Wheaton and colleagues (1977) suggested 5 or less, some suggested as low as “2,” or
as high as “5.” Byrne et.al. (1989) puts forward that x*/df > 2 indicates bad fit.

Values less than “1” will probably require insignificant CMIN values and will
therefore not be even necessary to calculate. Anything close to “1” should be very
good fit, but how far apart could it fall from “1?” Let’s remember the calculation of
degrees of freedom (df=Sample moments - number of distinct parameters); thus, as
df increases with sample size so does X2. Here we should first look at NPAR. The
default model’s chi-square calculation, not by chance, is the difference of NPAR
between saturated model and measurement (default) model. If “df” for default
model is calculated taking the number of parameters into account, this means we
can ignore it simply because it is already taken into account. Sample size should be
the only variable here to decide the value for CMIN/df cut point. Here we can use
common sense:

(1)  If the commonly accepted minimum sample size in a factor analysis is at least
50 and also 5 times the number of variables. This means minimum sample for
a decent number of variables as around 150 (there is no real calculation here
but merely observation).

(2)  If minimum number is around 150, doubling this number seems fair for a cut
point. Let’s say 300 here is a cut point for sample size to categorize CMIN/df
value.

(3)  Then we can say, looking to our commonly mentioned cut points of CMIN/df,
if sample size is between 150-300, then 3.5 (median of 2-5) can be taken as cut
point to assess the fit. If sample size is above 300, then “5” can be taken as the
criterion. More than 5 > per degrees of freedom indicates a bad fit regardless.
This value should be less. Please read further.

(4)  To decide whether a CMIN/df is good enough, one should also compare the
worst model’s (independence model) CMIN/df value. These values should be
significantly different from each other because if worst model is fit enough,
this requires measurement model to be even much fitter. Luckily, we have fit
indices comparing these values.*

4 Please refer to relative fit indices (NFL,LRFI, CFI and TLI)

8
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Indices: Fit and Others

Before beginning to discuss anything about fit, we have to make a short list of things
often confused by researchers. Researchers MUST keep in mind that:

(1)  Fithasvery little to do with validity: Most researchers confuse fit with validity.
Validity is a much broader concept to begin with.

(2)  Ifmodelis fit, this means your data is consistent with what you want to measure.
(3) If model is fit, then it is useful model.
(4)  Ifmodel is fit, then it will probably be able to be replicated in other researches.

(5) Ifmodelis fit, the researcher can stop adding covariances among residual error
terms.

(6)  Ifmodel is fit, then the researcher can proceed with further evaluation of construct
and other validities.

(7)  If model is fit, it is NOT necessarily correct or valid.
(8) A good fitting model is ONLY “reasonably consistent with the data.”

Strictly keeping the list above in mind, there are several indices to measure the
fit of the proposed measurement model (default model). Also, there is even more
debate about what to use and when to use it. Mostly, simple models, with a moderate
number of sample observations, have good fit. As the models get complicated and
sample size increases, these fit indices start to drop. Frequently, researchers face the
dilemma of choosing between fit indices because while some are above cut points,
others are below expected values. Here are some problems: what are the cut points
for indices? Is there a commonly accepted value for each? What index is best for
models with many variables? After being able to answer all these questions, another
problem may rise: what if some of them are above expected values and some are not,
who tells us which to go for, and finally, if one can solve all these issues, how are two
or more similar models with the same data compared. In this section we will try to
answer these questions with avoiding complicated, sophisticated jargon of statistics.
This does not mean we will leave things out; this implies we will keep it as “simple
and stupid” as possible.

Fit indices (measures) in AMOS are categorized into sub groups. These are: absolute
fit indices, relative/incremental fit indices, parsimony (check above) fit indices, non-
central chi-square distribution (population discrepancy based) fit indices, information
theoretic fit indices, and fit measure based on sample size.
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Absolute Fit Indices

Absolute fit indices indicate fit without comparing the default model to anything
for the best fit model. Despite there being a comparison with the best fit model
(saturated model), the indices indicate the model fit themselves. CMIN and CMIN/
df are the basis of absolute fit indices discussed above. Other absolute fit indices
include RMR and GFI.

RMR and GFI

It is the Root Mean Squared Residuals, therefore also called RMSR or SRMR. This
value is simply what it says. It squares the amount by which the sample (measurement)
covariances differ from their estimates. It is much like average of sum of squared
errors (or residuals) in regression, yet as measurement units differ from each other,
it is more relevant to carry out the calculation based on residual correlation matrix.
Usually an RMR value (based on correlations) less than 0.05 indicates a good fit. This
unfortunately is not a part of AMOS, but a script or manual calculation will sort out
this problem. The smaller the value is the better.

Thanks to AMOS and LISREL, a more advanced version of RMR is calculated
under the name of GFI (Goodness of fit). GFI compares by dividing squared weighted
sum of the variances of measurement and estimation, where weighting depends on
estimation method. Much like R2 in regression, it takes a value between “0-1.” It is
not suggested to use this index since it is affected by sample size. There also is a “df”
adjusted version called AGFI, if one wants to use it, this one should be preferred. A
“GFI” value larger than 0.95 can be accepted as good fit, preferably larger in small
sample sizes and less parameters. GFI is greatly affected by sample size, so simply
do not use this index (Kenny, D.A., 2005).

Incremental Fit Indices

These fit indices are also called relative or comparative indices because these indices
or measures are based on the idea that things may be worse. There always (hopefully
always; if not, do not even bother testing the model) is a worse model than default
model, where each observation is taken into account as independent. Independent
model is also called, due to its nature for comparison, baseline or null model.

Researchers may immediately ask why use the worst model but not the best. The
answer is hidden in the calculation. As defined earlier, C (in Amos CMIN or in some
cases F°) value is calculated with the help of perfectly fit model, which is also the
“saturated model” namely. This model is the best fit model to the data. Please remember,
fit and validity are two different things!

5 Discussed under title “Fit measures based on population discrepancy”

10
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NFI and TLI

Relative fit measures are NFI (Normed Fit Index), RFI (Relative Fit Index), IFI
(Incremental Fit Index), TLI (Tucker Lewis Index), and CFI (Comparative Fit Index).
NFT is calculated using minimum discrepancy (CMIN — Chi-Square) of default model
with CMIN of independent model. NFI gets a value between “0-1,” where a value of
“1” represents perfect fit to data. The higher the difference between model and worst fit
results in a bigger value. A value of 0.90 and above is accepted to represent acceptable
fit. The fit can be overestimated if the number of parameters is increased. RFI is the
“degrees of freedom” corrected version of NFI; therefore, it solves the issue of parameter
increase. It gets a value between 0 and 1 like NFI, and values above 0.90 is acceptable.
For both NFI and RFI, smaller sample size tends to inflate the values; therefore, it is
mostly suitable for larger samples. For smaller sample sizes, 0.95 is acceptable.

CFI

CFI is also “df” corrected versions of NFI. This time, it is not divided but rather
subtracted. For every parameter estimated, there is just one penalty. With larger
samples and low number of parameters change, values tend to be very close to NFI.
CFI may get values larger than “1” but “1” is always reported as maximum. Value of
“1” does not indicate perfect fit but simply means “df” of default model is larger than
chi-square of the default model.

TLI, also called Non-normed fit index, is very similar to RFI. Lower “chi-square to
dfratios” indicates a better fit. TLI and CFI depend on the average size of correlations
in the model. If the average correlation among variables is low, values are also low.
That being said, if several experimental variables (uncorrelated) are added to the
default model, then this decreases the value of TLI (also CFI). A suggestion here can
be that if the research model has several experimental or control variables, then TLI
and CFI are not to be suggested. Values above 0.90 are acceptable, and 0.95 indicates
good fit. If the model has very strongly or very weakly correlated variables, then the
suggestion is to ignore these indices.

Fit Measures Based on Population Discrepancy

F0 and RMSEA

As discussed earlier, the function of discrepancy or log-likelihood, in Amos is
presented as chi-square, “n” value being sample size minus number of groups (n=N-g ;
gismostly 1 in our cases) Steiger, Shapiro, and Browne (1985) proved (C=n.F,) under
certain conditions has a noncentral chi-square distribution with df degrees of freedom
and non-centrality parameter Delta=(C -df) =nF,. This results in F = [(C-df) / n] (or
simply and generally; F = [(C-df)/ (N-1)]. Non centrality parameter is then used to

11
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compare two nested model, such as default and saturated models. The problem here
is that F always favors complex models and will never favor the simpler model, or in
other words, parsimonious model. Steiger and Lind (1980) suggested compensating
for the effect of model complexity by dividing F by the number of degrees of freedom
for testing the model. This ratio then gives us “mean square error of approximation”
(this makes sense since discrepancy function is a square). Taking the square root of
the resulting ratio gives the population “root mean square error of approximation,”
or simply RMSEA. The calculation, in mathematical terms, favors larger sample size
or df. Just like TLI, if chi-square equals to df, then the value becomes “0.” One can
simply expand the calculation by rewriting F as “(y’-df) /n.” Thr formula becomes
“[(?-df) / (df.n)],” and size effect of “df” will be more obvious. The smaller the “df”
is the larger the RMSEA is, even with very small chi-square.® This may indicate a
“bad fit” since RMSEA values below 0.08 indicates an acceptable, and 0.05 indicates
a good fit. The suggestion is to use RMSEA in high df values and not even compute
with low values or to at least be very cautious when you have low df.

PCLOSE

PCLOSE is actually a “p” value, something we are familiar seeing in almost every
statistical analysis; however, this time it should not be confused with the p value of
chi-square (where H ; RMSEA=0) which stands for exact fit. This makes sense because
it stands for a “close fit.” Browne and Cudeck (1993), based on experience with SEM
and RMSEA, argue that a RMSEA of 0.05 or less points to a good (close) fit; hence
it calculates p value for null hypothesis of H; RMSEA<=0.05. When PCLOSE is
significant, null hypothesis is rejected, indicating lack of close fit. PCLOSE should
be insignificant to indicate good fit.

Parsimony Adjusted Fit Indices

James and colleagues (1982) and Mulaik and colleagues (1989) suggest adjusting
NFI and GFI by multiplying indices with a ratio called PRATIO. PRATIO, as mentioned
earlier in the related section of this paper, compares the degrees of freedom for default
model (df) and independence model (df)). The formula is simply PRATIO=df/df. AMOS
also calculates PGFI by using the same method. Usually and debatably, values above
0.80 indicate a good fit. The quotation below clarifies the use of parsimony indices:

“Although many researchers believe that parsimony adjustments are important,
there is some debate about whether or not they are appropriate. I see relative
fit indices used infrequently in the literature, so I suspect most researchers
do not favor them. My own perspective is that researchers should evaluate

6 For instance a chi-square value of 2 (obviously not significant) with 1 df and 90 samples will give out an
RMSEA of 0.106. sqrt((2-1)/1.(90-1)) = 0.106
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model fit independent of parsimony considerations, but evaluate alternative
theories favoring parsimony. With such an approach, we would not penalize
models for having more parameters, but if simpler alternative models seem to
be as good, we might want to favor the simpler model.”(Newsom, J. T., 2018)

Modification Indices

Modification indices show us how much chi-square (test statistics) will decrease if
covariance is added among error terms of mentioned variables. It is only informational
for CFA or SEM. Given a poorly-fitting model, you may want to know what path(s)
you could add to make it better. If you change something according to MlIs, then it is
exploratory in nature. Be alert. This will be further evaluated below.

Also, adding paths looking to MIs makes the consecutive models nested to each other;
therefore, one can use the model comparisons based on chi-square as mentioned below.

How much MI value is worth intervention? Actually, there is no certain limit to
this. MI values show the test statistics (chi-square or CMIN) change since models
are nested by nature. Change in CMIN may not mean much if it does not change the
fit. Researchers may individually calculate a rough estimate for CMIN/df change
by dividing the highest MI value with the “df.” If the decrease in CMIN/df seems
significant, then the covariance or path may be added. If not, then it seems negligible.
This can be done as many times as the model is re-estimated; however, the user should
be cautious in their use of MIs. If new models are developed with the help of MIs,
then it must be reported. Do not pretend that you have a theoretical reason for part
of a model that was put there because it was suggested by MI indices table! This is
simply fraud. Using MIs makes the analysis exploratory by nature. This means if you
are to use MI to correct the model, then this should be reported as exploratory SEM.
The second option is that you reserve a part of the data to first explore, then use the
remaining part to confirm (lesser evil).

Model Comparisons

Comparing two good models among each other is a nice comparison. If you are
comparing two bad models, then it is a burden, and moreover, it leads to nothing but
choosing the lesser evil. How good your model is is not described in this paper because
it not only depends on fit indices or other values, such as AVE, MSV, or ASV (also not
described here), but also theoretical background and other validity questions. Model
comparisons only and simply compare two or more models. Do not assign more value
to them, and do not fall into the mistake of calling a better model valid!

If one wishes to compare models, there are few criteria. Some of these information
criteria are also reported with AMOS:
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The model with lower AIC (mentioned before) or BIC (Bayesian information
criteria-not mentioned in this paper) is better, but, again, these are relative numbers.
They do not indicate an absolute fit. Simply note down the models’ AIC and BIC
values, and compare them.

If models are significantly different from each other, then a complicated version
is better

If models are not significantly different, then a simpler version is preferable.

If models are nested (such as default and saturated models mentioned earlier), then:

Log-likelihood functions can be calculated, and difference among them with df can
be used in chi-square distribution to test their difference. Added paths or deleted
paths on a model make them nested to each other, so, one can compare their log-
likelihoods. (This is not in AMOS by default, but R, Matlab, or AMOS scripts can
be used to calculate).

As a rule of thumb, CFA is used to “confirm” a factor structure or a measurement

model. Therefore, any changes made to this model will take it apart from confirmation
and will make it exploratory in nature. Model comparisons are mostly suggested for

exploratory SEM or path model comparisons.

Conclusion and Notes on Fit Indices

Several researchers and statisticians suggest different values and cut-points for

different so-called useful fit indices. Individual researchers should keep in mind some

notes about fit indices:

Normality affects absolute fit indices. Non-normal data inflates chi-square and,
therefore, decreases absolute fit values. Incremental and population discrepancy
measures are less affected (Kenny, D. A., 2015).

Number of variables affect fit. Increasing the variables decreases the fit. RMSEA,
especially, increases (we do not want this) as more variables are added. Indices
such as NFI, TLI, and CFI are relatively more stable but also declines slightly in
such case, which is all probably because of an inflated chi-square.

BIC, RMSEA, and TLI requires parsimony the most (also respectively among each
other), and NFI and CFI requires it the least.

NFI does not adjust for sample size. Increasing sample size decreases the fit value.
TLI and CFI are relatively stable with sample size, and variation decreases between
larger sample sizes. RMSEA, however, declines with sample size. Larger sample
researches favor RMSEA.
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*  While testing for exact fit, a researcher should go for insignificant CMIN, which is
almost always impossible (Unless with very few variables and a small sample size).

» To assess a good or close fit, researchers may go for different values;

(o)

RMSEA (below 0.05 to 0.08): If the model is parsimonious and sample size is
large, then below 0.05 or closer values; otherwise, 0.08 or below.

CFI, RNI, NFI, TLI, RFI, IFI (above 0,90 to 0,95): Depending on variable size,
variables below 10-12 require 0.95 for close fit, variables above 12 may require
0.90 as cut-point. The higher is always the better.

RMR below 0.05 or 0.08 for larger samples and GFI, preferably 0.90 or above.
It is preferable not to use these indices.

For comparing models (almost always nested models), information criteria,
such as (AIC, BIC e.g.), are useful.

For gradual comparisons and model refining, Modification Indices are very
beneficial.

Assigning names to nested models in AMOS and using these to calculate
likelihood ratios is the best way for model comparisons. (This requires an
advanced knowledge and expertise in AMOS)

After all discussions, some essential fit indices to take into account are CMIN and
CMIN/df, FO, RMSEA, and PCLOSE. Optionally, NFI, TLI, and CFI can be used.
Researchers must determine a rationale for fit criteria, mention those rationale in their

papers, and, perhaps, regard reporting several different types of fit indices. There is

no one set of rules which to use, but a researcher can take into account the size of the
sample, number of variables, and fit indices’ pros and cons. Finally, at least referring
to one index from every different group of indices that we mentioned earlier in this

text may reduce the criticism for the fit of the model.
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Genisletilmis Ozet

AMOS, Lisrel, R, Matlab ve bir¢ok benzer istatistiksel yazilim programlarinin
yardimiyla, karmasik arastirma modellerinin ¢ogu daha hesaplanabilir ve kolayca (?)
anlagilabilir hale gelmistir. Hatta birgok farkli iligkilere sahip, karmasik modeller bile
yazilimlar yardimiyla kolayca hesaplanabilmektedir. Aralarinda kiigiik farkliliklar
olmasina ragmen, ciktilar genellikle tutarlidir ve olusan tablolar ¢ogunlukla
anlagilabilirdir. Bununla beraber, arastirma metodolojisi hakkinda artan merak ve
bilgi miktar1 dolayisiyla, bu basit goriiniimli ¢iktilar daha da karmagiklagsmaya ve
derinlesmeye baslamistir. Sozii edilen ifadeler ¢eliskili goziikse de bu noktada ima
edilen durum orta seviye bir arastirmaci i¢in oldukea tanidik gelecektir, ¢iinkii bir
aragtirmacinin istatistik bilgisi ve anlayisi derinlestik¢e, bu rakamlarin nereden, nasil
ve neden hesaplandigina dair sorular ve siipheler artmaktadir. Bu sorular ve stipheler
uyum indeksleri, ki-kare ve serbestlik dereceleri (Degrees of Freedom), degisiklik
indeksleri (Modification Indices), kovaryanslar ve artiklar (residuals) hakkinda merak
uyandirmaya baglamaktadir. Bu dogrultuda, istatistiksel jargondan miimkiin oldugunca
kacinarak CMIN (ya da ki-kare), farkli model tanimlar1 ve bu modellerin yardimiyla
uyum indeksi hesaplamalarina odaklanilmaktadir. Tiim bunlarla birlikte bu ¢alismada,
on yillik bir tartigmaya da son vermek amaciyla; hangi uyum indekslerinin ne zaman
ve nasil kullanilacagi, tam olarak neyi belirttikleri ve hangi degerlerin iyi veya kotii
uyum anlamina geldigi tartisilmaktadir.

Bu ¢aligmada tartisilmakta olan, yapisal esitlik modellemesi, dogrulayici faktor analizi
ve uyum kavramlarini kavrayabilmek literatiirde olan bazi tanimlarin netlestirilmesi
gerekmektedir. Oncelikle ¢ogu zaman kafa karistirici olabilen, arastirma siirecinin birgok
noktasinda yeterince agiklanmayan ve istatistik iglemlerin yapilmasi i¢in kullanilan
yazilimlarda bulunan modellerin tanimlanmasi ve daha sonra da tahmin yontemlerinin
aciklanmast yerinde olacaktir. Cogu “yapisal esitlik modellemesi (SEM)” yontemi kullanan
arastirmaci hangi yazilimi kullanirsa kullansin “Maximum Likelihood” yontemine aligir
ancak biiyiik bir kisminin bu yontemin gergekte ne oldugu ve ne yaptig1 hakkinda higbir
fikri yoktur. Ayrica modellerin uyumunu tartismadan dnce acikliga kavusturulmasi
gereken birka¢ kavram vardir. Bunlar; CMIN, Ki-kare, Log-Likelihood (Maximum
Likelihood), C ve F degerleri, NPAR, p ve P, uyum ve indeks, PRATIO. Bu kavramlarin
cogu tanidik gelmelerine ragmen, cogu zaman yaniltici, kafa karistirici, sasirtici ve
celigkili olabilmektedir. Genellikle bu kavramlar, ¢esitli arastirmalarda goriilmekte
ve bilindigi diisiiniilmektedir ancak gergekte ne olduklarini ve nereden geldikleri
tizerinde diisiiniilmemektedir. Bu sebeple bu ¢alismada bir¢ok kavram ve terminolojinin
tartisilmasinin yani sira, gerekli degerler ve 6nemli noktalar ele alinmistir.

Ayrica Tiirkge genisletilmis dzette yer verilemeyen ancak makalede ingilizce olarak
ayrmtilandirilmis konular:
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- Yuvalanmig modeller (nested models), arastirma modeli, doymus (saturated) model,
bagimsizlik (independence) modeli gibi kavramlar ve bu modellerin uygunluk
degerlerini hesaplarken nasil kullanildig.

- Maximum Likelihood y6nteminin faktor analizinde ve uygunluk degerlerini
hesaplamada ni¢in 6nemli oldugu ve tam olarak ne yaptig1.

- Ki-Kare kavraminin ayrintili olarak incelenmesi ve neden uygunluk degerlerinin
en Onemlisi oldugunun tartigilmasi.

- Tim uygunluk istatistiklerinin ayrintili agiklamasi, benzerlik ve farklari, giiclii ve
zayif yonleri.

- Diizeltme indislerinin (Modification Indices) ne oldugu ne sekilde kullanmasi
gerektigi.

Bazi aragtirmacilar ve istatistik¢iler, uyum indeksleri i¢in farkli degerler ve sinirliliklar
belirlemektedir. Bu nedenle arastirmacilar uyum indeksleri i¢in su noktalar1 akilda
tutmalidir:

- Normallik mutlak uyum indekslerini etkilemektedir. Normal olmayan veriler ki-
kareyi arttirir ve boylece mutlak uyum degerlerini azaltir (Kenny, D.A., 2015).

- Degisken sayis1 uyum indekslerini etkilemektedir. Degiskenlerin artmas1 uyumu
azaltir. Yeni degiskenlerin eklenmesi yoluyla, istenmeyen bir durum olan RMSEA nin
ylikselmesi de miimkiindiir. NFI, TLI ve CFI gibi indeksler nispeten daha kararl
bir yapida olsa da degisken sayisina gore ufak azalmalar gosterebilir. Bu durumun
sebebinin de ki-karenin artmasi oldugu tahmin edilmektedir.

- BIC, RMSEA ve TLI modelde sikiligin (parsimony) karsiligini verirken, NFI ve
CFI bunu en az ddiillendiren indekslerdir.

- NFI 6rneklem biiyiikliigiine gore kendini ayarlamaz, artan 6rneklem biiyiikligi
uyum degerini azaltir.

- TLI ve CFI degerleri 6rneklem biiyiikliigii ile nispeten daha kararl bir iligki
igerisindedir ve 6rneklem biiyiikligii arttikca degiskenlik azalir. RMSEA da 6rneklem
blyiikliigii ile diisiis gostermekte, biiylik 6rneklem biiyiikliikleri RMSEA’nin lehine
bir durum ortaya koymaktadir.

- Kesin bir uyumluluk i¢in, aragtirmact CMIN degerinin anlamsiz olmasini beklemelidir.
Ancak bu durum neredeyse her zaman anlamsizdir. (Cok az degisken ve ¢ok kiiciik
bir 6rneklem biiylikligii olmadigi siirece)
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- lyi ya da tam uygunlugun olup olmadigim degerlendirmek i¢in arastirmacilar farkls

degerler kabul edebilmektedir;

(o)

RMSEA (0,05 ve 0,08’in altinda): Model siki (parsimonious) ise ve 6rneklem
say1st fazla ise 0,05’in altinda ya da ona yakin degerler olmasi, aksi takdirde
ise 0,08’in altinda olmasi beklenir.

CFI, RNI, NFI, TLI, RFI, IF1 (0,90 ve 0,95’in istiinde): Degisken biiylikligiine
bagl olarak degismektedir. 10-12 degiskenden az olan durumlar 0,95 ya da
ona yakin bir uyum gerektirmekte iken 12’den fazla degiskeni olan durumlar
ise i¢in siir nokta 0,90’dir. Bu deger i¢in daha yiiksek olmasi her zaman daha
iyidir.

Daha biiyiik 6rneklemler icin RMR ’nin 0,05 ya da 0,08 den kiigiik ve tercihen
GFI’nin 0,90 ya da iistiinde olmasi beklenir. Ancak bu indekslerin tercihen
kullanilmamas1 dngoriilmektedir.

Modelleri karsilagtirmak i¢in AIC, BIC gibi kriterler daha yararlidir.

Asamali karsilastirmalar ve model arindirma icin Modifikasyon Indeksleri
(Modification Indices) ¢ok faydalidir.

AMOS’ta i¢ ice gecmis modellere isim atamak ve onlarin olasilik oranlarini
hesaplamak model karsilastirmalar i¢in en iyi yontemdir. (AMOS konusunda
ileri diizeyde bilgi ve uzmanlik gerektirir.)

Tiim bu tartigmalardan sonra dikkate alinmasi gereken bazi temel uyum indeksleri;
CMIN ve CMIN/df, F,, RMSEA ve PSCLOSE’dir. istege bagh olarak NFI, TLI ve CFI

st

de kullanilabilir. Bunlar dogrultusunda arastirmacilarin uyum kriterleri i¢in mantikli

gerekeeler belirlemeleri, bu gerekceleri makalelerinde belirtmeleri ve birkag farkli uyum

indeksi ile karsilastirmalar yapmalar1 gerekmektedir. Bu noktada kullanilmasi gereken

kurallar biitiinii bulunmamaktadir ancak aragtirmaci 6rneklem biiylikligiini, degisken

say1sini, uygun endekslerin artilarini ve eksilerini dikkate alarak karar vermelidir.

Son olarak, bu ¢aligmada bahsedilen her farkli indeks grubundan bir indekse atifta

bulunmak, modelin uyumuna yonelik elestirileri azaltacaktir.
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