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ABSTRACT 

This study aims to compare (R, S) and (R, S, Qmin) inventory control policies in a serial 

supply chain.  We develop a simulation based genetic algorithm (GA)  in order to find the 

optimal numerical "S" value that minimizes the total supply chain cost (TSCC) and compare 

our results between two methods. 
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1. Introduction 

In today's global economy, firms need to manage their supply chains effectively, in order 

to survive in the markets and gain competitive advantage in the growing markets where 

customer expectations have been rising. Supply chain management aids companies reduce 

their costs, represent the products in right times, right amounts and right places by 

performing in better and faster conditions, thus getting the advantage against their 

competitors.  

Supply chain management is very different than the management of one site. The 

inventory stockpiles at the multiple sites, including both incoming materials and finished 

products, have complex interrelationships. Effective and efficient management of 

inventory in the supply chain process has a significant impact on improving the ultimate 

customer service provided to the customer. (Lee, Billington, 1992: 65) 

In order to satisfy customer demand timely, firms need to hold the right amount of 

inventory. While inventory can protect firms against unpredictable market conditions, can 

be very costly in a supply chain. Given the primary goal of reducing system-wide cost in a 

typical supply chain; it is important to take a close look at interaction between different 

facilities and the impact it has on the inventory policy that should be employed by each 

facility.  (Simchi-Levi, Kaminsky, Simchi-Levi, 2000: 61) 

The main contribution of this paper is two-fold; first, to develop the simulation part of the 

solution methodology using the Microsoft Excel spreadsheet for the sake of 

implementation simplicity and second, to implement (R, S, Qmin) inventory policy 

developed by Keismüller et.al. (2011) in a serial supply chain and compare it with the 

classic (R, S) policy. We use simulation based GA to determine “S” numerical value 

which will minimize the TSCC. In this model, the TSCC consists of two cost components 

which are holding and shortage costs.  
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The remainder of the paper is organized as follows. Section 2 considers inventory control 

in multi echelon systems and describes two corresponding inventory control policies 

which are used in this study. In section 3, the solution methodologies are defined. In 

section 4, the numerical example is presented to test the performance of those policies. 

Lastly, conclusions are summarized in section 5.  

2. Inventory Control in Multi echelon systems  

Inventory has a significant role in a supply chain’s ability to support a firm’s competitive 

strategy. If a very high level of responsiveness is required by the firm’s competitive 

strategy, this can be achieved by locating large amounts of inventory close to the 

customer. On the other hand, a company can use inventory to become more efficient by 

reducing inventory through centralized stocking. The responsiveness that results from 

more inventory and the efficiency that results from less inventory is the main trade-off 

implicit in the inventory driver. (Chopra, Meindl, 2010: 26)   

Finding the best balance between such goals is often trivial, and that is why we need 

inventory models. In most situations some stock is required. The two main factors are 

economies of scale and uncertainties. “Economies of scale” means we need to order in 

batches. Uncertainties in supply and demand together with lead- times in production and 

transportation inevitably create a need for safety stocks. Organizations can reduce their 

inventories without increasing other costs by using more efficient inventory control tools.  

(Axsater, 2006: 2)  

Multi-echelon inventory models are central to supply chain management. The multi-

echelon inventory theory began when Clark and Scarf (1960) published their seminal 

paper. (Chen, 1999: 73) Clark and Scarf (1960) consider multi-echelon inventory systems 

for the first time in their study and they also use simulation to evaluate corresponding 
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dynamic inventory model. Their study is a starting point for an enormous amount of 

publications on multi-echelon systems.  

There are two different decision systems used in multi echelon inventory systems and 

those are centralized decision system (echelon stock) and decentralized decision system 

(installation stock). Decentralized decision systems only require local inventory 

information, while centralized systems require centralized demand information. (Chen, 

1999: 75)  The centralized decision system, in which an optimal decision to send a batch 

from one site to another, may depend on the inventory status at all sites and has several 

disadvantages. In order to use that kind of a decision system, the firm needs to spend an 

additional cost for data movement despite the advanced information technology. In 

addition to this, it is difficult to derive complete general centralized policies. As a result of 

this, it is more suitable to limit the degree of centralization. (Axsater, 2006: 195) On the 

other hand, relatively independent organizations often control their inventory systems and 

make their own replenishment decisions, since different facilities are normally situated at 

locations far from each other in a supply chain. (Petrovic, Roy, Petrovic, 1998: 302-303) 

(Axsater, 2006: 195)  Decentralized decision system does not require any information 

about the inventory situation at other sites and it is not necessary to explicitly keep track 

of the stocks at the downstream installations. These are the obvious advantages of this 

type of decision systems. (Axsater, Rosling, 1993: 1274) 

It is natural to think of the physical stock on hand when talking about the stock situation. 

However, stock on hand cannot be the sole determinant in ordering decision. The 

outstanding orders that have not yet been delivered should also be included in the 

equation. Therefore, the stock situation is characterized by the inventory position in 

inventory control. 
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‐‐‐‐‐‐‐‐   Inventory position  

               Net stock or both the inventory position and the net stock (if they are equal) 

 Notes: Orders placed at times A,C and E, arrive at times B,D, and F respectively 

 

 

Most of the time, “R” and “S”, two decision variables, are not independent, that is, the 

best value of “R” depends on the “S” value, and vice versa. Assuming that “R” has been 

predetermined without knowledge of the “S” value is still quite reasonable for practical 

purposes when dealing with B items. (Silver, Pyke, Peterson, 1998: 278)  In this study, we 

assume that the value of “R” is predetermined. 

2.2.(R, S, Qmin) Inventory control policy  

This simple periodic review policy, called (R, S, Qmin) is proposed by Keismüller et.al.( 

2011). In this policy, the inventory position is monitored every “R” units of time and if the 

inventory position is above the level “S”, then no order is placed. In case the inventory 

position is below the level “S", an amount of order is placed which equals or exceeds Qmin 

(minimum order size). An amount larger than Qmin is ordered if the minimal order size 

Qmin is not sufficient to raise the inventory position up to level S. This policy is a special 

case of (R, s, t, Qmin) policy which is developed by Zhou et.al. (2007) where s=S−Qmin and 

t=S−1. (Keismüller, Kok, Dabia, 2011: 281) 
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analogy. In the selective breeding of plants or animals, for example, offspring that have 

certain desirable characteristics are sought — characteristics that are determined at the 

genetic level by the way the parents’ chromosomes are combined. In the case of GAs, a 

population of strings is used, and these strings are often referred to in the GA literature as 

chromosomes, while the decision variables within a solution (chromosome) are genes. The 

recombination of strings is carried out using simple analogies of genetic crossover and 

mutation, and the search is guided by the results of evaluating the objective function (f) 

for each string in the population. Based on this evaluation, strings that have higher fitness 

(i.e., represent better solutions) can be identified, and these are given more opportunity to 

breed. (Glover, Kochenberger, 2003: 58)  

The GA search starts with the creation of a random initial population of N individuals that 

might be potential solutions to the problem. Then, these individuals are evaluated for their 

so-called fitnesses, i.e. of their corresponding objective function values. A mating pool of 

size N is created by selecting individuals with higher fitness scores. This created 

population is allowed to evolve in successive generations through the following steps: 

(Marseguerra, Zio, Podofillini, 2002: 158) 

1. Selection of a pair of individuals as parents; 

2. Crossover of the parents, with generation of two children; 

3. Replacement in the population, so as to maintain the population number N constant; 

4. Genetic mutation. 

The genetic operators of crossover and mutation are applied at this stage in a probabilistic 

manner which results in some individuals from the mating pool to reproduce. (Chambers, 

1995: 1) In general, the parent selection is fitness proportional and the survivor selection 
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simulation has a better chance of being accepted by end users compared to complicated 

models. (Kapuscinski, Tayur, 1999: 11)  

The analytical objective function and constraints are replaced by one or more discrete 

event simulation models in simulation optimization. Decision variables are the conditions 

the simulation is run under, and the performance measure becomes one (or a function of 

several) of the responses derived by a simulation model. Simulation optimization 

techniques have generally been applied to systems where the decision variables are 

quantitative and associated with the amount of some resources available in the model. 

(Azadivar, Tompkins, 1999: 169-170) 

A general simulation-based optimization method includes two essential components: an 

optimization module that guides the search direction and a simulation module that is used 

to evaluate performances of candidate solutions (network configuration + operational 

rules and parameters). In comparison with MP techniques, simulation-based optimization 

methods employ one or more simulation models as a replacement to the analytical 

objective function and constraints. The decision variables are the conditions under which 

the simulation is run. Iterative output of the simulation is used by the optimization module 

to provide feedback on progress of the search for the optimal solution. (Ding, Benyoucef, 

Xie, 2005 : 612) 

In industrial applications, several search algorithms such as, pattern search, simplex, 

simulated annealing and GA, have been linked with simulation. These search algorithms 

successfully bring simulation model to near-optimal solutions. Developed algorithms in 

the literature showed that GA has the capability to robustly solve large problems and 

problems with nonnumeric variables. It performed well over the others in solving a wide 
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variety of simulation problems. (Ding, Benyoucef, Xie, 2005: 612) Thus, in this study we 

will consider these systems as a combination of GA and simulation. 

4. Numerical Example 

4.1.The Model 

We consider a four stage serial supply chain in which random customer demand occurs at 

stage 1, retailer; stage 1 orders from stage 2, distributer; stage 2 orders from stage 3, 

manufacturer; stage 3 orders from stage 4, supplier; and stage 4 orders from an outside 

raw material supplier that has unlimited supply.  

 

Figure 4: Serial Supply Chain Model 

We develop a simulation based genetic algorithm (GA)  in order to find the optimal 

numerical "S" value that minimizes the total supply chain cost (TSCC), comprising 

holding and shortage costs, and compare our results between two inventory control 

methods. Simulation is used to evaluate “S” numerical values generated by the GA.   

The objective function of the problem can be formulated as below.  

       Min (Total Supply Chain Cost) = 
T N

i i,t i i,t
t=1 i=1

(h I + b B )   

                 hi = unit inventory holding cost at member i                    ( i=1 to N) 

RetailerSupplier  Manufacturer  Distributer Customer    

Demand 

Product Flow         

Information Flow
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                 Ii,t = the quantity of on hand inventory at member i           ( i=1 to N) 

                 bi = unit shortage cost at member i                 ( i=1 to N) 

                 Bi,t = the quantity of backordered inventory at member i   ( i=1 to N) 

                 Li, = replenishment lead time with respect to member i    ( i=1 to N) 

                 Di,t= demand per unit time at member i                          ( i=1 to N) 

 

In this study, we use a four-stage serial supply chain model which is developed by Daniel 

and Rajendran (2005). The assumptions of the model are given below.  

 There is no lead time for information or order processing, however, there is a combined 

lead time consisting of processing and transportation at each stage and it is called 

replenishment lead time. Every member has its respective replenishment lead time and 

they are 1 , 3, 5, 4 days respectively for retailer, distributor, manufacturer and supplier.  

 When there is enough on-hand inventory to meet the order of the downstream member, 

the demand is fully replenished. Otherwise, the unsatisfied demand is backlogged, in 

other words, placed in the back-order queue.  

 Every member has infinite capacity.  

 The most downstream member, retailer, faces random customer demand which is 

assumed to be constant.  

 The source of supply of raw materials to the most upstream member, supplier, has 

infinite raw material availability.  
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4.2.Application of the inventory control policies  

We aim to observe different impacts of the relative inventory control policies in terms of 

cost reduction on a specific serial supply chain model.  

       (R,S) inventory control policy application 

Inventory level at every member is periodically monitored and if the relative inventory 

position falls below the pre-specified “S” level, a replenishment order is placed for a 

quantity that will bring the inventory position back to the pre-specified “S” level. Base-

stock level at every member in the supply chain takes integer values.     

 (R, S, Qmin) inventory control policy application 

In this policy, the inventory position is monitored periodically and if the inventory 

position is above the level “S”, then no order is placed. In case the inventory position is 

below the level “S", an amount of order is placed which equals or exceeds Qmin (minimum 

order size). An amount larger than Qmin is ordered if the minimal order size Qmin is not 

sufficient to raise the inventory position up to level S. 

Since (R,S,Qmin) policy differs most from the order-up-to policy (R,S) or fixed order size 

policy (R,s,Q) when the numerical values of Qmin is close to the mean period demand, a 

non-dimensional parameter, m=Qmin/ E [D], is introduced.  In our study, we assume that 

Qmin value is predetermined and it is 38 for all supply chain members while m=0.95.   

 

4.3.Proposed Solution Methodology 

Simulation-based GA is used as an experimental method to evaluate the models 

performance. The supply chain simulation is run for given customer demands generated 

from a uniform distribution for a specified run length over which the statistic TSCC is 

collected.  Random customer demand is generated uniformly within the range [20, 60] per 



 

unit 

TSC

 

The 

MA

whic

gene

com

aver

orde

A m

valu

data

chro

Chr

This

set o

time. Sim

CC is noted.

GAtool in 

ATLAB and

ch are gen

eration are 

mpete. Addit

rage of the 

er to avoid c

macro is dev

ue. Thus, GA

a and the 

omosome, is

romosome re

s study uses

of “S” value

mulation exp

.  

MATLAB

d Microsoft 

nerated by 

forced to l

tionally, we

objective fu

computation

veloped in E

A derives th

output dat

s sent to GA

epresentatio

s gene-wise

es represent

periments a

Figu

B 7 is used t

Excel in o

GA and w

eave the po

e derive 100

function (TS

nal errors th

Excel to cal

he “S” value

ta of the s

A as an inpu

on 

e chromosom

ting every m

are carried o

ure 5: Excel 

to run the G

order to eva

we make a 

opulation in

0 different u

SCCk) value

hat might a

culate the a

es and send

simulation 

ut data.  

me represen

member in th

out with a 

Link 

GA. We ge

aluate the p

decision a

n order to m

uniform ran

e which is o

arise due to

average of t

ds them to th

which is

ntation. Eac

he chain. In

run length

enerate an E

performance

about which

make room 

ndom numb

obtained thr

the usage o

the objectiv

he Excel sim

the fitness 

h chromoso

n the numer

h of 1200 d

 

Excel Link 

e of the “S

h members

for an offs

ber sets and 

rough simu

of random n

e function (

mulation as 

value (fk)

ome is code

ical exampl

14 

days and 

between 

” values 

s of one 

spring to 

take the 

ulation in 

numbers.  

(TSCCk) 

an input 

) of the 

ed with a 

le, string 



15 
 

length is taken as four and each gene in a chromosome represents the respective 

installation’s “S” value as shown below in figure 6.  

 

 

                                    

                                   Figure 6: Chromosome representation  

 

      Initial Population Generation 

The initial population is created by following procedure.  

Si
UL= Max Di,t * Max Li 

Si
LL= Min Di,t * Min Li 

A random number between [20,780] is generated, which is assigned as the “S” value for 

that member and same procedure is repeated for the remaining members. For the retailer 

considered in this model, the maximum and minimum customer demands are 60 and 20 

per unit time respectively. The minimum replenishment lead time is predetermined as 1 

day for the retailer. However, if the distributor doesn’t have enough on hand inventory at 

the time, to fulfill the order of retailer, the lead time will be longer than 1 day. And, in 

case all upstream members don’t have enough on hand inventory, the replenishment lead 

time for retailer will be the maximum replenishment lead time, which is the sum of 

replenishment lead times of the retailer, the distributor, the manufacturer, and the supplier, 

i.e. 13 days. (i. e. 1+3+5+4 days) Therefore, the initial “S” value for retailer is generated 

randomly between [20, 780]. According to that procedure, the lower limit and upper limit 

vectors [Si
UL, Si

LL] for all supply chain members are determined  as [ 20 60 100 80] and 

[780 720 540 240], respectively.  
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Selection 

In this study, we use the roulette-wheel selection procedure.  In roulette selection process, 

chromosomes are grouped together based on their fitness function values. First, MATLAB 

sends each chromosome in the initial population over to the simulation in Microsoft Excel 

via the M-file and the simulation calculates fitness values of those chromosomes. Then 

those fitness values are again sent from Excel to GATOOL in MATLAB via the M-file. 

Fitness values for each chromosome are summed up to reach a cumulative fitness value.  

The process continues by dividing each chromosome’s fitness value by the cumulative 

fitness value, thus calculating a percentage value for each chromosome. Then, those 

percentages are lined up in order around a roulette wheel and the selection process starts; a 

random uniform number between 0 and 1 is selected and whichever chromosome falls into 

this  number is selected to be passed on to the next generation.  

 

 

 

 

 

Figure 7: Selection flow chart  

In the next step, some random changes are made on chromosomes with the help of the 

genetic operators, in order to obtain better results. Various trials are conducted when 

determining which genetic operators to use in order to generate the optimum results. 

 

MATLAB 

GAtool 

Excel

M‐File

Simulation 

“S” value

fitness function    

value 
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Crossover 

The crossover operator, by combining the chromosomes of two parents, helps to obtain 

one or two offspring which have a better fitness function. A single point crossover 

operator is used in this study. This type of crossover operator generates a random number 

between 1 and the length of chromosome (N) and this becomes a cut point. Parts of two 

parents after the cut point are exchanged to form the two offspring. 

 

                               Figure 8: A single point crossover representation  

Mutation 

The mutation operator randomly modifies a parent to generate an offspring who will 

replace it. Since every gene in a chromosome represents the “S” value of the 

corresponding member, a gene-wise mutation is used in this study. 

Elitism  

This operator aims to ensure the offspring that have the best fitness scores evolve into 

successive generations.  In this study, the number of the offspring that will be allowed to 

evolve into successive generations is determined to be 2.  

 

 

Offspring 

generated by 

crossover 

34  120  184  90

45  200 80  150

34 80 200 150 

45 120 184 90 
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Termination Criteria  

These criteria are determined in order the complete genetic algorithm calculations based 

on user preferences. Termination criteria include number of generations, time limit, fitness 

value limit, maximum number of generations in case genetic algorithm generates an 

identical value. In this study, there is no time limit set and the number of generations is 

determined to be 100.  

As a result of MATLAB GATOOL calculations, and using aforementioned operators, 

(R,S) policy “S” numerical values  are determined as [52 147 227 185] for the retailer, the 

distributor, the manufacturer and the supplier, respectively. TSCC generated by GATOOL 

is calculated as 415.832. On the other hand, (R,S, Qmin) policy “S” numerical values are 

determined as [47 144 224 191], for the retailer, the distributor, the manufacturer and the 

supplier, respectively. TSCC generated by GATOOL is calculated as 439.951.  

5. Summary and Conclusion 

Supply chain management provides customers with the right product or service at a 

reasonable price, in the right place, at the right time, and with the best quality possible, 

thus increasing customer satisfaction. Supply chain managers strive to deliver products or 

services at the right price in order for customers to gain competitive advantage over 

competitors.   At this point, reducing inventory cost, which is a major part of total supply 

chain costs, will help provide products or services at a better price. Since demand is 

stochastic in real life cases, and there is certain replenishment lead time for every member, 

supply chain members do not have an option to apply lean production techniques, in 

which the inventory levels are zero.  However, the trade-off between the quality of 

customer service level and the costs should be taken into account carefully while 

determining the appropriate level of on-hand inventory.  Thus, insufficient inventory level 
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might lead to inferior customer service level and satisfaction albeit a lower product cost. 

In this study, we aim to determine the optimal level of on-hand inventory in order to 

minimize supply chain inventory costs. In the decision process, in order to save on time 

and costs, supply chain managers should prefer a method such as simulation, which better 

reflects uncertainties of real life situations. In addition to this, they can use a heuristic 

optimization method, such as genetic algorithm which derives optimal solutions in a short 

time period. Using a combination of those two methods, thus placing results generated by 

genetic algorithm into the simulation, they can observe results in several different realistic 

circumstances.  

In our study, we examine the application and measure the performance of the inventory 

policy (R, S, Qmin)  developed by Keismüller et.al.(2011) on the four stage serial supply 

chain model. This policy was considered on a single item single echelon system with 

stochastic demand in a previous study. Our study extends (R, S, Qmin) inventory control 

policy implementation by applying it in a multi echelon system. We develop a simulation 

model using Microsoft Excel spreadsheet for the sake of implementation simplicity. This 

simulation model can be used to evaluate the performance of the (R, S, Qmin) inventory 

policy on various supply chain scenarios.  

Afterwards, we compare the relative inventory policy with the classic (R, S) policy. 

According to our experimental results, the (R, S, Qmin) policy costs slightly more than the 

classic (R,S) policy, for the given scenario. However, it leads to a better customer service 

level by avoiding inventory shortages. Also, (R, S, Qmin) policy is more efficient when 

economies of scale exist. We use a simulation based GA to determine the “S” numerical 

value which will minimize the TSCC. In this model, the TSCC consists of two cost 

components which are holding and shortage costs. The solution methodology used in this 

study is easy to implement and doesn’t require cumbersome mathematical endeavors, 
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which makes the process practical for users who don’t have advanced level of analytical 

skills. 
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