

Available online at www.alphanumericjournal.com

alphanumeric journal
The Journal of Operations Research, Statistics, Econometrics and

Management Information Systems

Volume 8, Issue 1, 2020

© 2013 - 2020. Alphanumeric Journal
The Journal of Operations Research, Statistics, Econometrics and Management Information

Systems All rights reserved.

Alphanumeric Journal
Volume 8, Issue 1, 2020

Received: June 12, 2019
Accepted: June 05, 2020
Published Online: June 30, 2020

AJ ID: 2020.08.01.OR.02
DOI: 10.17093/alphanumeric.576919
R e s e a r c h A r t i c l e

Machine Coded Compact Genetic Algorithms For Real Parameter Optimization
Problems

Mehmet Hakan Satman, Ph.D. *

Prof., Department of Econometrics, Faculty of Economics, İstanbul University, İstanbul, Turkey, mhsatman@istanbul.edu.tr

Emre Akadal, Ph.D.

Res. Assist., Department of Informatics, İstanbul University, İstanbul, Turkey, emre.akadal@istanbul.edu.tr

* İstanbul Üniversitesi İktisat Fakültesi Ekonometri Bölümü Rektörlük Merkez Bina Beyazıt, Fatih İstanbul Türkiye

ABSTRACT

In this paper, we extend the Compact Genetic Algorithm (CGA) for real-valued optimization problems by dividing the total search

process into three stages. In the first stage, an initial vector of probabilities is generated. The initial vector contains the

probabilities of bits having 1 depending on the bit locations as defined in the IEEE-754 standard. In the second stage, a CGA

search is applied on the objective function using the same encoding scheme. In the last stage, a local search is applied using the

result obtained by the previous stage as the starting point. A simulation study is performed on a set of well-known test functions

to measure the performance differences. Simulation results show that the improvement in search capabilities is significant for

many test functions in many dimensions and different levels of difficulty.

Keywords: Optimization, Genetic Algorithms, Evolutionary Optimization, Simulations

http://www.alphanumericjournal.com/
http://alphanumericjournal.com/type/research-article/
http://orcid.org/0000-0002-9402-1982
http://orcid.org/0000-0001-6817-0127

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 44

Alphanumeric Journal
Volume 8, Issue 1, 2020

1. Introduction

Genetic Algorithms (GAs) are search and optimization techniques that mimic the
natural selection and principals of genetics (Holand, 1975; Goldberg and Holland,
1988; Sastry, 2014). In GAs, a population of random solutions are generated and
assigned to fitness values. A fitness value is a measure of the quality of a candidate
solution. Well known genetic operators such as crossover and mutation are applied
on the selected candidate solutions which have higher fitness values to generate new
population members called offspring. After many steps, it is expected that the
generated population will have higher average fitness than the one generated in
former iterations (Goldberg, 1989).

Estimation of Distribution Algorithms (EDAs) form another family of GAs in which a
vector of probabilities are used to generate candidate solutions by sampling rather
than a population of candidate solutions (Pelikan et al., 2015). PBIL (Population-
based incremental learning) is an earlier member of EDAs that consists on creating a
population of candidate solutions by sampling and updating the vector of
probabilities using some best solutions (Baluja, 1994). A vector of probabilities is
initially created as [0.5 0.5 . . . 0.5]. 𝑖th element of the vector represents the probability
of 𝑃(𝑏𝑖 = 1) where 𝑏𝑖 is the 𝑖th bit of the candidate solution, 𝑖 = 1,2, . . . , 𝑙, and 𝑙 is the
number of elements. The best 𝑛𝑣 solutions are selected from the population of size
𝑛 to update the vector of probabilities. The aim of the update process is to increase
or decrease the probabilities towards to best solutions for generating better
solutions in following iterations. After many steps, it is expected that the elements
of the probability vector approach to either zero or one. The final solution is a bit
string which is considered as the optimum.

Compact Genetic Algorithms (CGAs) are the other branch of the EDA family (Harik et
al., 1999). CGAs are compact as they are not based on a population and require less
computer memory to run. This property of CGAs makes the hardware implementation
possible in devices with low resources (Aporntewan and Chongstitvatana, 2001). In
each step of the algorithm, two candidate solutions are sampled using the vector of
probabilities. Depending the fitness values, the best candidate solution is labeled as
the winner. If 𝑖th gene of the winner is 1, then the 𝑖th element of the probability vector
is moved towards to 1 with the amount of

1

popsize
 where 𝑖 = 1,2, . . . , 𝑛, 𝑛 is the

chromosome length, and popsize is the population size. If the 𝑖th gene of the winner
is 0, then the amount of mutation is negative, that is, the 𝑖th element of the
probability vector is moved downwards to 0. These operations are repeated until all
of the elements of the probability vector are either 0s or 1s. If the popsize parameter
is large then the amount of mutation is low, that is, more computation time is needed
to get a fully converged probability vector. When the popsize is small, then the
changing steps are large, convergence rate is high but the result is generally a local
optimum because the search space is not well explored. Since the parameters of the
crossover probability, mutation probability, population size, number of generations,
and crossover and mutation types are not needed, CGAs are parameterless. The
popsize parameter is only about the mutation of probability elements and it is not
really defines the number of candidate solution as in GAs.

Classical GAs and CGAs represent the search space using bits. Addition to this, both
GAs and CGAs are extended to use other types of encoding systems such as integer
encoding, floating-point or real-valued encoding, permutation encoding, machine-
coding, etc. PBIL and CGA are mainly developed for the binary encoding of variables.

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 45

Alphanumeric Journal
Volume 8, Issue 1, 2020

Since it is possible to encode real values as bits, these algorithms can also be applied
on the real valued optimization problems. Besides this, some new sampling schemes
are based on sampling values using some probability distributions and mutating the
distribution parameters during iterations (Sebag and Ducoulombier, 1998; Mininno
et al., 2008).

In this paper, we devise a new CGA based algorithm for the real valued optimization
problems. The encoding of variables is based on binary encoding but the IEEE-754
transformation is used to separate the sign, the exponent, and the mantissa parts of
a real value as stored in computer memory. The algorithm starts with an adjusted
probability vector. The adjusted vector is the vector of probabilities in which the
corresponding elements represent the probability of bits having value of 1 depending
on the locations of bits in the IEEE-754 standard. After obtaining the adjusted vector,
the usual CGA search is performed. Finally, a local search is applied to obtain more
precise solutions.

In Section 2, we present the algorithm in great detail. In Section 3, an example is given
to demonstrate results of the each phase applied on a well known test function. In
Section 4, we perform a simulation study to measure the performance differences
between the original and the extended algorithms. Finally, in Section 5, we conclude.

2. The Algorithm

The extended algorithm is mainly based on three steps. In first step, an initial vector
of probabilities is generated using the IEEE-754 encoded bits of variables. The initial
vector of probabilities does not necessarily have 0.5 in each elements. In the second
step, a CGA search is performed using the same encoding scheme of real values. In
the last step, a local search is applied to obtain more precise solutions. These steps
are defined in Section 2.1, Section 2.2, and Section 2.3.

2.1. Encoding of variables

Digital computers store and represent the data using bits. Since bits are numbers in
base 2, it is straightforward to express integer numbers by combining many bits.
Representing rational numbers is also possible using a finite number of bits.
However, representation of real or irrational numbers requires a discretization
process (Goldberg, 1991). Emphasizes that success of a GA search is related to the
building blocks represented by bits as proved in Schemata theorem. Since there is not
a distinction between phenotype and genotype of variables, real valued GAs are
blocked in later iterations.

IEEE-754 is a standard for encoding and decoding real numbers using fixed number
of bits in computer memory (IEEE, 2008). In this standard, bits of a 32-bit floating
number is divided into three parts. The first part is 1 bit length and defines the sign
of the number. The following 8 bits form the exponent part and the remaining 23 bits
form the mantissa. Finally a 32 bit floating-point number is defined as

 (−1)𝑠𝑖𝑔𝑛 × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 × 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

where 𝑠𝑖𝑔𝑛 is zero if the number is positive. Table 1 shows an example of how the bit
representation is changed when a single digit is changed. Since there are 232 possible

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 46

Alphanumeric Journal
Volume 8, Issue 1, 2020

representations, the first bit divides the total number of possibilities by 2. It is also
shown that the exponent part remains same when a small change is occurred in the
number in some cases. In contrast, the numbers 12345.6789 and 02345.6789 have
several differences in both exponent and mantissa parts even they differ in a single
digit. Consequently, numbers sampled in a predefined range have some patterns in
both sign, exponent, and mantissa parts.

Using machine based transformations as the encoding scheme is not new in
evolutionary optimization context. Budin et al., (2010) used the 64-bits version of the
IEEE-754 standard in GA search. It is shown that the machine based encoding scheme
outperforms the classical binary encoding. Ojha et al. (2012) trained a neural network
using a GA search with the variables encoded by 32-bits IEEE-754 standard. Umbarkar
et al. (2015) developed a software based GA that uses the IEEE-754 standard for the
encoding scheme. Similarly, Satman (2013) suggested using the byte representation
of double precision real values and showed that the byte based encoding outperforms
the real-valued encoding scheme in many cases (Satman and Akadal, 2017)

Number Sign Exponent Mantissa

-12345.6789 1 10001100 10000001110011010110111

12345.6789 0 10001100 10000001110011010110111

12344.6789 0 10001100 10000001110001010110111

12335.6789 0 10001100 10000001011111010110111

12245.6789 0 10001100 01111110101011010110111

11345.6789 0 10001100 01100010100011010110111

02345.6789 0 10001010 00100101001101011011101

12345.6788 0 10001100 10000001110011010110111

12345.6779 0 10001100 10000001110011010110110

12345.6689 0 10001100 10000001110011010101101

12345.5789 0 10001100 10000001110011001010001

10000.0000 0 10001100 00111000100000000000000

Table 1. IEEE-754 representation of some 32-bit floating-point numbers

Suppose the single variable function 𝑦 = 𝑓(𝑥) has an extremum at 𝑥 = 𝑥0 where
−50 ≤ 𝑥 ≤ 50. Let 𝑆𝑖 is the IEEE-754 encoded bit string of the 𝑖th floating-point
number in the defined range, 𝑖 = 1,2, . . . , 𝑚, and 𝑚 is the total number of floating-
point numbers. Then the probability of the sign bit having the value of 1 is 50%
because half of the values lies above the zero. The interesting part is the exponent as
the values in the predefined range possibly have 1s in the first bit whereas the second
bit is generally zero. Note that in the mantissa part, most of the bits can be either 0s
or 1s with the probability of 50% except the first one since the probability of first bit
having 1 is 36%. The probability vector of the exponent part is given in Table 2.

1 2 3 4 5 6 7 8

0.96 0.04 0.04 0.04 0.04 0.04 0.51 0.43

Table 2. 𝑃(𝑏𝑖𝑗 = 1) in exponent parts of −50 ≤ 𝑥 ≤ 50

In CGAs, initial elements of the probability vector are both set to 0.5. As it is
mentioned before, this assumption is not really needed and the some parts of the
search space is not needed to be explored. Addition to this, some bits can be either 0
or 1, however the probabilities of having 0 or 1 are not equal in some cases. In the first

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 47

Alphanumeric Journal
Volume 8, Issue 1, 2020

part of the devised algorithm, the adjusted probability vector is generated before the
genetic search in order to prevent moving around the unnecessary parts of the search
space. When the range of the variable 𝑥 is defined as −∞ < 𝑥 < ∞ then all of the
elements of the probability vector are 0.5. In this special case, the proposed algorithm
does not start with an initial probability generating process.

2.2. Generating initial probability vector

As mentioned in Section 2.1, the proposed algorithm is based on the IEEE-754
transformation on the real values of 32 bits. Since any bits of an real value can be 1
with probability of

1

2
 in a range of −∞ < 𝑥 < ∞, probabilities for some bits can be

different in a more narrowed range. For instance, 𝑃(𝑏1 = 0) is always zero for the
range of 10 ≤ 𝑥 ≤ 100 whereas 𝑃(𝑏1 = 1) is 1 for any range with both elements are
negative, where 𝑏𝑖 is the 𝑖th bit of the IEEE-754 representation.

The proposed algorithm estimates the probability vector by generating the empirical
probabilities of having 𝑃(𝑏𝑖 = 1). Algorithm 2.2 shows the whole process for a single
variable using a pseudo-code. The process can be repeated for the other variables in
the multivariate case. The algorithm generates a probability vector of size 32 for a
single real variable. If the bounds of the variable is defined as [𝑚𝑖𝑛𝑣𝑎𝑙, 𝑚𝑎𝑥𝑣𝑎𝑙], B
samples are sampled using a Uniform distribution with parameters minval and
maxval. The encode() function gets a real number as argument and returns the IEEE-
754 representation. In the iteration 𝑖, the bit vector is appended at the 𝑖th row of the
result matrix. Finally, the column means of the matrix is returned. The parameter B
can be selected manually. In Section 4, we selected the value of 105 for the B
parameter.

Algoritm 1. Generating Initial Probability Vector For a Single Variable

2.3. The hybrid compact genetic search

The devised method performs a genetic search using the algorithm given in Algorithm
2.3. The algorithm uses a vector of probabilities generated using the Algorithm 2.2.
In each step, two candidate solutions are sampled using the probabilities. Assuming
the goal function is subject to be minimized, the winner is the candidate chromosome
with lower cost value. These parts of the genetic search are almost same with the

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 48

Alphanumeric Journal
Volume 8, Issue 1, 2020

CGAs expect the decode() part. decode() receives 𝑝 × 32 bits as input and returns a
vector of 𝑝 real values which are decoded using the IEEE-754 transformation.

Algorithm 2. Machine Coded Compact Genetic Algorithm

Note that the function decode() uses the single precision version of IEEE-754 which
spans 32 bits in the computer memory. The double precision version of the
specification represents a wider range of numbers as it spans 64 bits. However,
working with longer bit strings reduces the performance drastically.

In GAs, and generally in some evolutionary optimization algorithms, genetic operators
perform the search by Exploration and Exploitation (Chen et al., 2009). After
performing a genetic operator, a new solution can be created in a different location
of the search space which covers the global optimum. On the other hand, the newly
generated solution can fall a location close to the global optimum which is generated
using two best solutions in the population. Shortly, the processes of searching the
new areas and performing local fine-tuning are executed in parallel. The balance
between these two vital tasks must be calibrated.

In some cases, a genetic search can terminate by reporting a good solution which is
not the global optimum because of lack of a lucky mutation or crossover operation or
overshooting due to wrongly selected adaptive probabilities. In other words, a GA
search can find a nice solution around the global optimum and a local fine-tuning
operation may be required for finding the ideal solution.

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 49

Alphanumeric Journal
Volume 8, Issue 1, 2020

Hybridization of search algorithms is applied in several ways by combining at least
two optimization algorithms. Gonçalves et al. (2015) improved the result obtained by
a genetic algorithm using a local search optimization tool to prevent getting stuck on
a local optimum. Kim et al (2007) combined a genetic algorithm with a particle swarm
optimization tool in the run-time for searching the global optimum of multimodal
functions. Arakaki and Usberti (2018) and Usberti et al. (2018) used a hybridization
method based on the statistical filtering. Satman and Akadal (2016) applied ARIMA
forecasting to predict offspring using the historical chromosome data of parents in
earlier generations as a hybridization tool. Liu et al. (2018),Long and Wu (2014), Kang
et al. (2011) and Satman (2015) hybridized many evolutionary optimization
algorithms with the Hooke and Jeeves local optimizer for improving the quality and
the precision of the solutions.

Hooke and Jeeves algorithm is a local search optimizer for optimization problems
which are not necessarily differentiable. Algorithm starts searching using an initial
solution. This initial search is modified in all directions by a predefined step size
parameter. Successful moves are stored and the search is repeated while the
decreased step size is not zero. The final solution is reported as the optimum (Hooke
and Jeeves, 1961; Moser 2009).

In our proposed method, we apply a Hooke and Jeeves local search for improving the
result obtain by the CGA defined in Algorithm 2.3. The whole algorithm is given in
Algorithm 2.3.

Algorithm 3. Machine Coded Compact Genetic Algorithm with Hybridization

The algorithm given in Algorithm 2.3 is mainly based on three steps. The 𝑛 −variable
objective function defined as 𝑓: ℛ𝑛 → ℛ is transformed using the IEEE-754 standard
and redefined as 𝑓𝑏: ℬ𝑛×32 → ℛ where ℬ is the binary space. In the first stage defined
in Algorithm 2.2, the initial vector of probabilities is generated. Depending on the
range of the variables, some probabilities in this vector equal to 0, 1, or any value
within the range. If the corresponding probability is either zero or one, the search
space is divided and the remaining effort is performed on the other elements of the
vector. The final probabilities are then used in the MCCGA (Machine-coded Compact
Genetic Algorithm) stage given in the Algorithm 2.3. This stage is almost as same
with the original CGA algorithm except the initial vector of probabilities and the
decoder function. In this stage, the vector of probabilities is used for generating new
chromosomes by sampling. The decoder is applied to evaluate the objective function
𝑓𝑏 using the binary representation standard. After all of the probability elements are
converged to either 0s or 1s, the stage is terminated. The final 𝑛 × 32 bits are decoded

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 50

Alphanumeric Journal
Volume 8, Issue 1, 2020

into the real values and a Hooke and Jeeves search is started. The reported solution
is expected to be the global optimum.

3. An Example

The Chichinadze function is defined as

 𝑓(𝑥, 𝑦) = 𝑥2 − 12𝑥 + 11 + 10cos(𝜋𝑥/2) + 8sin(5𝜋𝑥) −
1

√5
𝑒−0.5(𝑦−0.5)2

 for −30 ≤ 𝑥, 𝑦 ≤ 30 and 𝑓∗ = −43.3159 is the global minimum at 𝑥 = 5.90133 and 𝑦 =

0.5. The graphics of the function in a narrower range is shown in Figure 1.

Figure 1. Chichinadze function

The classical CGA search with the initial vector of probabilities

 [0.5 0.5 . . . 0.5]

reports the solution as 𝑥 = −0.0949707, 𝑦 = 0.4999996, and 𝑓𝜙 = 13.61534 which is
far from the global minimum. The popSize parameter is selected as 200.

Since the selected range is a considerably small zone of the whole floating-point
representation space, some bits of the encoded variables tend to take the value of
either 0 or 1 with higher probabilities. Figure 2 shows the probabilities 𝑃(𝑏𝑖 = 1) of
IEEE-754 encoding of −30 ≤ 𝑥 ≤ 30. It is shown in Figure 2 that the 𝑃(𝑏𝑖 = 1) for 𝑖 =

3,4,5,6,7 are under 0.2, whereas, the probabilities are above 0.6 for 𝑖 = 2,8,9. As the
range is symmetric around zero, 𝑃(𝑏1 = 1) is calculated exactly as 0.5. 𝑃(𝑏𝑖 = 1) for
𝑖 = 10,11,12 are under 0.5 but the differences are negligible. A CGA search with the
generated initial vector reports the solution as 𝑥 = 5.90625, 𝑦 = 0.465660, and 𝑓𝜓 =

−43.23912 which is closer to the global minimum. Despite the solution reported by
the algorithm is satisfactory, the search capabilities can be improved. The reported
solution is a good initial point for Hooke-Jeeves algorithm. After applying the local
search process using the CGA based solution as the initial solution, we obtain the final
solution as 𝑥 = 5.901329, 𝑦 = 0.500000, and 𝑓𝜁 = −43.31586.

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 51

Alphanumeric Journal
Volume 8, Issue 1, 2020

Figure 2. 𝑃(𝑏𝑖 = 1) of IEEE-754 encoding for −30 ≤ 𝑥 ≤ 30

4. Simulations

We perform a simulation study to compare the search capabilities of CGA and the
developed algorithm. We use a suit of test functions reported in (Mishra, 2006). This
set of test functions is used to measure the performance differences of well-known
optimization techniques in the literature. The simulations are repeated 1000 times
for each configuration. Since the popSize parameter affects the performance, it is
selected as 10, 20, 50, 100, and 200. For the subset of functions defined for 𝑚 ≥ 2
variables, simulations are performed for 𝑚 = 2, 𝑚 = 10, and 𝑚 = 25. Simulation
results for 𝑚 = 2 are reported in Table 3-6.

The table columns represents the value of popSize parameter, arithmetic means and
standard deviations of reported objective values by algorithms, and p-values. We
applied a 2-sample Wilcoxon Test (Mann-Whitney) for independent samples to test
equality of location parameters of two populations. Small p-values indicate that we
can safely reject the null-hypothesis of 𝐻0: 𝜇1 = 𝜇2 in contrast to 𝐻𝑎: 𝜇1 ≠ 𝜇2 where 𝜇1
and 𝜇2 are location parameters of distributions related to the corresponding objective
values. NA values are generated when the algorithms produce exaclty the same
results and NAs can be interpreted as the p-value of 1. It is shown in Tables 3-6 that
almost all of the p-values are small and this can be accepted as a general evidence for
performance inequality of these methods. CGA outperforms the developed algorithm
for Cross leg table, Modified Schaffer #1, Modified Schaffer #2, Schaffer, and
Griewank functions. The two method performs nearly same for Crowned cross, Tree
humps camel back, Ackley, Bohacevsky, Holzman, Hyperellipsoid, Maxmod, Multimod,
Rastrigin, Sphere, and Sumsquares functions despite the reported p-values indicate
the evidence of inequality of the performances. The developed algorithm
outperforms the CGA for Test tube holder, Holder table, Carrom table, Cross in tray,
Cross, Pen holder, Bird, Modified Schaffer #3, Egg holder, Chichinadze, McCormick,
Levy, Styblinski tang, Bukin, Leon, Giunta, Rosenbrock, and Schwefel functions. As the
value of popSize parameter increases the performance also increases but the
difference is more apparent for the developed algorithm. Interestingly in some
functions, for example Bird function, average performance is decreased as the
popSize is increased but the standard deviation is also increased. That means the
performance is badly affected and includes fluctuations but it reports solutions that
close to the global optimum in some iterations. This exception also designates that
increasing the popSize does not necessarily mean having a better solution reported
after choosing an unlucky random seed.

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 52

Alphanumeric Journal
Volume 8, Issue 1, 2020

Table 7-9 summarize the simulation reports for higher dimensions. The developed
algorithm have better or equal performance than the CGA except Sine envelope,
Maxmod, and Schaffer functions. Both of the methods fail to obtain a good solution
in average for Schwefel function. It is also shown in results that an increase on
popSize generally increases the quality of solutions with smaller standard deviations.
But the increase in the average quality is steeper in the CGA especially for higher
dimensions

Function Population Size Mean of CGA
Mean of
MCCGA

Std. Dev. Of CGA
Std. Dev. Of
MCCGA

P-value

TestTubeHolder
(-10.8723)

10 0 -7.101 0 2.506 0
20
50
100

-5.303
-5.61
-5.92

-7.415
-8.813
-9.518

0.855
1.45
1.834

2.600
2.421
1.965

0
0
0

200 -6.663 -9.73 2.36 1.693 0

HolderTable
(-26.92)

10 -2.718 -20.485 0 8.702 0
20
50
100

-18.276
-20.217
-21.408

-22.677
-24.796
-25.053

7.454
6.356
5.236

7.646
5.706
5.39

0
0
0

200 -22.155 -25.736 4.236 4.408 0

CarromTable
(-24.15682)

10 -0.246 -15.748 0 10.422 0
20
50
100

-13.02
-15.045
-16.104

-20.097
-21.672
-22.646

7.587
6.423
5.427

8.319
6.737
5.341

0
0
0

200 -16.995 -23.156 4.258 4.433 0

CrossInTray
(-2.062612)

10 0 -1.483 0 0.311 0
20
50
100

-0.937
-1.043
-1.1

-1.377
-1.318
-1.297

0.517
0.444
0.388

0.26
0.203
0.172

0
0
0

200 -1.186 -1.281 0.257 0.148 0

CrownedCross
(0)

10 0 0 0 0.005 0
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0.32
NA

200 0 0 0 0 NA

Cross
(0)

10 1 0 0 0 0
20
50
100

0.017
0.008
0.006

0
0
0

0.057
0.038
0.039

0
0
0

0
0
0

200 0.004 0 0.029 0 0

CrossLegTable
(-1)

10 -1 -0.996 0 0.054 0
20
50
100

-1
-1
-1

-0.999
-1
-1

0
0
0

0.018
0
0

0
0.32
NA

200 -1 -1 0 0 NA

PenHolder
(-0.96354)

10 -0.692 -0.933 0 0.055 0
20
50
100

0
0
0

-0.95
-0.956
-0.958

0
0
0

0.029
0.022
0.019

0
0
0

200 0 -0.96 0 0.015 0

Bird
(-106.7645)

10 2.718 -100.463 0 19.278 0
20
50
100

2.205
1.872
1.683

-94.018
-77.442
-56.877

0.343
0.345
0.251

28.071
41.14
47.658

0
0
0

200 1.586 -37.239 0.145 47.332 0

ModifiedSchaffer1
(0)

10 0 0.29 0 0.219 0
20
50
100

0
0
0

0.307
0.251
0.193

0
0
0

0.215
0.22
0.213

0
0
0

200 0 0.092 0 0.167 0

ModifiedSchaffer2
(0)

10 0 0.298 0 0.222 0
20
50
100

0
0
0

0.322
0.267
0.195

0
0
0

0.211
0.216
0.215

0
0
0

200 0 0.113 0 0.182 0

Table 3. Simulation results for 𝑝 = 2

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 53

Alphanumeric Journal
Volume 8, Issue 1, 2020

Function
Population
Size

Mean of
CGA

Mean of
MCCGA

Std. Dev. of
CGA

Std. Dev. of
MCCGA

P-value

Modified
Schaffer3 (0.00156685)

10
20
50
100
200

0.708
0.436
0.311
0.171
0.051

0.261
0.189
0.073
0.018
0.007

0
0.153
0.22
0.21
0.115

0.214
0.206
0.143
0.061
0.014

0
0
0
0
0

Modified
Schaffer4
(0.292579)

10 1 0.468 0 0.066 0
20
50
100

0.497
0.496
0.497

0.484
0.494
0.497

0.029
0.032
0.029

0.048
0.03
0.021

0
0
0

200 0.498 0.498 0.024 0.014 0

EggHolder
(-959.64)

10 -25.46 -562.187 0 223.319 0
20
50
100

127.575
139.999
112.034

-652.474
-691.437
-732.816

431.326
418.092
374.64

207.335
196.009
180.738

0
0
0

200 103.389 -771.031 350.95 164.206 0

Chichinadze
(-43.3159)

10 20.605 -34.038 0 7.826 0
20
50
100

15.953
14.591
14.122

-36.68
-39.147
-40.627

6.575
4.539
1.859

6.976
5.947
5.058

0
0
0

200 13.795 -41.718 1.016 4.113 0

McCormick
(-1.9133)

10 1 -1.913 0 0 0
20
50
100

-0.571
-1.363
-1.567

-1.913
-1.913
-1.913

1.134
0.615
0.248

0
0
0

0
0
0

200 -1.66 -1.913 0.166 0 0

Levy
(0)

10 2 0.003 0 0.022 0
20
50
100

1.625
1.211
0.816

0.001
0.003
0.006

0.459
0.632
0.674

0.008
0.016
0.025

0
0
0

200 0.526 0.009 0.664 0.03 0

ThreeHumps
CamelBack
(0)

10 0 0 0 0.009 0
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

200 0 0 0 0 0.74

Zettle
(-0.003791)

10 0 -0.004 0 0 0
20
50
100

-0.002
-0.002
-0.002

-0.004
-0.004
-0.004

0.001
0.001
0.001

0
0
0

0
0
0

200 -0.002 -0.004 0.001 0 0

StyblinskiTang
(-78.332)

10 0 -77.159 0 4.15 0
20
50
100

-28.501
-49.807
-56.95

-78.233
-78.332
-78.332

14.975
12.004
04.01.1900

1.179
0
0

0
0
0

200 -57.997 -78.332 0.075 0 0

Bukin
(-124.75)

10 75.25 -124.75 0 0 0
20
50
100

141.262
100.604
75.744

-124.75
-124.75
-124.75

361.617
323.891
297.064

0
0
0

0
0
0

200 55.893 -124.75 271.1 0 0

Table 4. Simulation results for p=2 (Continued)

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 54

Alphanumeric Journal
Volume 8, Issue 1, 2020

Function Population Size Mean of CGA Mean of MCCGA Std. Dev. Of CGA
Std. Dev. Of
MCCGA

P-value

Leon
(0)

10 1 0 0 0 0
20
50
100

0.91
0.828
0.807

0
0
0

0.099
0.084
0.066

0
0
0

0
0
0

200 0.789 0 0.038 0 0

Giunta
(0.06447047)

10 0.363 0.088 0 0.055 0
20
50
100

0.251
0.151
0.104

0.072
0.065
0.064

0.081
0.08
0.057

0.033
0.01
0

0
0
0

200 0.076 0.064 0.031 0 0

Schaffer
(0)

10 0 0.315 0 0.217 0
20
50
100

0
0
0

0.341
0.302
0.253

0
0
0

0.205
0.213
0.221

0
0
0

200 0 0.201 0 0.218 0

Ackley
(0)

10 0 0 0 0 0
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
NA

200 0 0 0 0 NA

Bohachevsky
(0)

10 0 0 0 0 0
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0.03

200 0 0 0 0 NA

Griewank
(0)

10 0 0.123 0 0.227 0
20
50
100

0
0
0

0.051
0.014
0.008

0
0
0

0.105
0.032
0.005

0
0
0

200 0 0.008 0 0.003 0

Holzman
(0)

10 0 0 0 0 0
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

200 0 0 0 0 0.03

Hyperellipsoid
(0)

20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0.01

 200 0 0 0 0 0.73

Maxmod (0)

10 0 0 0 0 0
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

200 0 0 0 0 0.03

Multimod (0)

10 0 0 0 0 0
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

200 0 0 0 0 0.32

Rastrigin (0)

10 0 0 0 0 0.16
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

NA
NA
NA

200 0 0 0 0 NA

Table 5. Simulation results for 𝑝 = 2 (Continued)

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 55

Alphanumeric Journal
Volume 8, Issue 1, 2020

Function
Population
Size

Mean of
CGA

Mean of
MCCGA

Std. Dev. of
CGA

Std. Dev. of
MCCGA

P-value

 10 1 0 0 0 0

Rosenbrock (0)
20
50
100

0.903
0.839
0.803

0
0
0

0.101
0.091
0.06

0
0
0

0
0
0

 200 0.789 0 0.039 0 0
 10 0 -564.713 0 185.758 0

Schwefel
(-837.9658)

20
50
100

46.004
75.887
105.49

-695.61
-773.647
-801.335

186.434
186.164
174.445

143.328
95.362
70.113

0
0
0

 200 117.696 -814.746 159.06 55.054 0
 10 0 0 0 0 0

Sphere (0)
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

 200 0 0 0 0 0.07
 10 0 0 0 0 0

Sumsquares (0)
20
50
100

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

 200 0 0 0 0 0.09

Table 6. Simulation results for 𝑝 = 2 (Continued)

Function Population

Size
Number of
variables

Mean of
CGA

Mean of
MCCGA

Std.Dev.of
CGA

Std.Dev.of
MCCGA

P-value

 10 1.443 8.052 0 5.682 0
 50 10 1.255 0.563 0.252 0.754 0
Levy(0) 200

10
 0.943

2.805
0.01
43.545

0.266
0

0.065
11.761

0
0

 50 25 82.084 9.682 154.712 5.015 0.76
 200 2.576 0.467 0.271 0.539 0
 10 0 27.855 0 12.448 0
 50 10 0.016 10.555 0.231 4.572 0
Schaffer(0) 200

10
 0

0
4.134
138.307

0
0

4.046
26.803

0
0

 50 25 6.121 45.069 9.544 10.855 0
 200 0 20.157 0 7.557 0
 10 0 0 0 0 0
 50 10 0 0 0 0 0
Ackley(0) 200

10
 0

0
0
0

0
0

0
0

0.01
0

 50 25 0.167 0 1.51 0 0
 200 0 0 0 0 0
 10 0 0 0 0 0
 50 10 0.045 0 0.718 0 0
Bohachevsky(0) 200

10
 0

0
0
0

0
0

0
0

0
0

 50 25 7719.617 0 16729.91 0 0
 200 0.024 0 0.536 0 0
 10 0 2.889 0 3.789 0
 50 10 0.001 0.244 0.017 0.367 0
Griewank(0) 200

10
 0

0
0.009
0.444

0
0

0.022
0.759

0
0

 50 25 80.303 0.521 193.885 0.733 0
 200 0 0.063 0 0.114 0

Table 7. Simulation results for 𝑝 = 10 and 𝑝 = 25

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 56

Alphanumeric Journal
Volume 8, Issue 1, 2020

Function Population
Size

Number of
variables

Mean of
CGA

Mean of
MCCGA

Std.Dev.of
CGA

Std.Dev.of
MCCGA

P-value

Holzman
(0)

10 0 0 0 0 0
50 10 3.428 0 74.454 0 0
200
10

 0
0

0
0

0
0

0
0

0
0

50 25 199426.7 0 349380.2 0 0
200 0.32 0 7.467 0 0

Hyperellipsoid
(0)

10 0 0 0 0 0
50 10 0.193 0 3.358 0 0
200
10

 0
0

0
0

0
0

0
0

0
0

50 25 550.005 0 885.08 0 0
200 0.028 0 0.885 0 0

Maxmod
(0)

10 0 4.485 0 4.746 0
50 10 0.01 0.014 0.141 0.133 0
200
10

 0
0

0.004
9.993

0
0

0.089
0.221

0
0

50 25 4.405 2.61 4.235 4.155 0
200 0 0.055 0 0.326 0

Multimod
(0)

10 0 0 0 0 0
50 10 0 0 0 0 NA
200
10

 0
0

0
0

0
0

0
0

NA
NA

50 25 0 0 0 0 NA
200 0 0 0 0 NA

Rastrigin
(0)

10 0 0 0 0 0
50 10 0.069 0 1.101 0 0
200
10

 0
0

0
0

0
0

0
0

NA
0

50 25 49.673 0 77.604 0 0
200 0.004 0 0.126 0 0

Rosenbrock
(0)

10 9 0.614 0 1.44 0
50 10 23.55 0.108 172.108 0.646 0
200
10

 8.865
24

0
0.821

0.111
0

0
1.613

0
0

50 25 2235399 0.482 3334847 1.301 0
200 751517.7 0.024 2119229 0.308 0

Schwefel
(-189.829,
-10474.5725)

10 0 -2380.959 0 446.686 0
50 10 -5.881 -3330.335 412.897 446.297 0
200
10

 16.142
0

-3910.476
-5428.361

409.475
0

249.125
695.657

0
0

50 25 -13.716 -7074.333 641.135 1038.013 0
200 -0.213 -8801.598 650.614 1050.941 0

Sphere
(0)

10 0 0 0 0 0
50 10 0.226 0 4.481 0 0
200
10

 0
0

0
0

0
0

0
0

0
0

50 25 122.937 0 219.366 0 0
200 0.008 0 0.179 0 0

Table 8. Simulation results for 𝑝 = 10 and 𝑝 = 25 (continued)

Function
Population
Size

Number of
variables

Mean of
CGA

Mean of
MCCGA

Std.Dev.of
CGA

Std.Dev.of
MCCGA P-value

Sumsquares
(0)

10 0 0 0 0 0
50 10 0.266 0 6.485 0 0
200
10

0
0

0
0

0
0

0
0

0
0

50 25 1814.545 0 3363.846 0 0
200 0.096 0 3.036 0 0

SineEnvelope
(0)

10 0 2.783 0 0.829 0
50 10 0 2.272 0 0.838 0
200
10

0
0

0.783
8.179

0
0

0.597
1.248

0
0

50 25 0 6.995 0 1.318 0
200 0 3.123 0 1.212 0

Table 9. Simulation results for 𝑝 = 10 and 𝑝 = 25 (continued)

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 57

Alphanumeric Journal
Volume 8, Issue 1, 2020

5. Conclusion

Each single bit of an IEEE-754 encoded real value has a different impact depending
on the location of the bit. As a result of this, some bits tend to be zero or one when a
variable defined in a narrower range. Process of assigning 0.5s to elements of the
initial vector of probabilities in CGAs does not consider these biases. In this paper we
suggest to generate the initial vector of probabilities depending on the location of
bits encoded by the 32-bits IEEE-754 standard. This special binary coding scheme is
used elsewhere before and proved to be success in many works. In the second stage
of the extension, a usual CGA search is applied on the objective function using the
same encoding scheme. In order to improve the solutions obtained by CGA, Hooke-
Jeeves algorithm is applied using the reported result as the starting point. An other
local search method can be used instead, however, Hooke-Jeeves algorithm has many
benefits including applicability in non-differentiable functions. When a good starting
point is fed, the algorithm performs a fine-tuning operation to obtain a closer solution
to the global optimum. We perform a simulation study using a set of well-known test
functions to measure the performance differences. Simulation results show that the
hybridized and machine-coded CGAs outperform the classical CGAs.

References

Aporntewan C. and Chongstitvatana P. (2001) A hardware implementation of the compact genetic
algorithm. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, volume
1, pages 624–629. IEEE, 2001.

Arakaki, R. K and Usberti, F. L. (2018) Hybrid genetic algorithm for the open capacitated arc routing
problem. Computers & Operations Research, 90:221–231.

Budin, L., Golub, M., & Budin, A. (2010). Traditional techniques of genetic algorithms applied to
floating-point chromosome representations. Sign, 1(11), 52.

Chen, J., Xin, B., Peng, Z. Dou, L. and Zhang, J. (2009) Optimal contraction theorem for exploration–
exploitation tradeoff in search and optimization. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 39(3), 680–691.

Goldberg, D. E. (1991) Real-coded genetic algorithms, virtual alphabets, and blocking. Complex
systems, 5(2). 139–167.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.

Goldberg. D. E (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

Gonçalves, J. F. And Mendes, J. J. M and Resende, M. GC. (2005) A hybrid genetic algorithm for the
job shop scheduling problem. European journal of operational research, 167(1), 77–95.

Harik, G. R., Lobo, F. G. and Goldberg, D. E. (1999) The compact genetic algorithm. IEEE transactions
on evolutionary computation, 3(4). 287–297.

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press.

Hooke, R. and Jeeves, T. A. (1961) “direct search” solution of numerical and statistical problems.
Journal of the ACM (JACM), 8(2), 212–229.

Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, Aug 2008.

Kang, F., Li, J., Ma, Z., & Li, H. (2011). Artificial bee colony algorithm with local search for numerical
optimization. Journal of Software, 6(3), 490-497.

Kim, D. H., Abraham, A. and Cho, J. H. (2007) A hybrid genetic algorithm and bacterial foraging
approach for global optimization. Information Sciences, 177(18), 3918–3937.

Liu, D., Liu, C., Zhang, C., Xu, C., Du, Z. and Wan, Z. (2018), "Efficient hybrid algorithms to solve mixed
discrete-continuous optimization problems: A comparative study", Engineering
Computations, 35(2), 979-1002.

Satman, Akadal Machine Coded Compact Genetic Algorithms For Real Parameter Optimization Problems 58

Alphanumeric Journal
Volume 8, Issue 1, 2020

Long, Q., & Wu, C. (2014). A hybrid method combining genetic algorithm and Hooke-Jeeves method
for constrained global optimization. Journal of industrial and management optimization,
10(4), 1279-1296.

Mininno, E., Cupertino, F., & Naso, D. (2008). Real-valued compact genetic algorithms for embedded
microcontroller optimization. IEEE Transactions on Evolutionary Computation, 12(2), 203-
219.

Mishra, S. K. (2006) Some new test functions for global optimization and performance of repulsive
particle swarm method. Available at SSRN 926132.

Moser, I. (2009) Hooke-jeeves revisited. In Evolutionary Computation, 2009. CEC’09. IEEE Congress
on, pages 2670–2676.

Ojha, V. K., Dutta, P., Saha, H., & Ghosh, S. (2012). Application of real valued neuro genetic algorithm
in detection of components present in manhole gas mixture. In Advances in Computer
Science, Engineering & Applications, 333-340. Springer, Berlin, Heidelberg.

Pelikan, M., Hauschild, M. W., & Lobo, F. G. (2015). Estimation of distribution algorithms. In Springer
Handbook of Computational Intelligence (pp. 899-928). Springer, Berlin, Heidelberg. Baluja,
S. (1994). Population-based incremental learning. a method for integrating genetic search
based function optimization and competitive learning. Carnegie-Mellon Univ Pittsburgh Pa
Dept Of Computer Science.

Sastry, K., Goldberg, D. E and Kendall, G. (2014). Genetic algorithms. In Search methodologies,
Springer, 93–117.

Satman, M. H. (2013), Machine coded genetic algorithms for real parameter optimization problems.
Gazi University Journal of Science, 26(1), 85–95.

Satman, M. H. (2015) Hybridization of floating-point genetic algorithms using hooke-jeeves
algorithm as an intelligent mutation operator. Journal of Mathematical and Computational
Science, 5(3), 320-332.

Satman, M. H. and Akadal, E. (2016) Arima forecasting as a genetic inheritance operator in floating-
point genetic algorithms. Journal of Mathematical and Computational Science, 6(3), 360.

Satman, M. H. and Akadal, E. (2017) Machine-coded genetic operators and their performances in
floating-point genetic algorithms. International Journal of Advanced Mathematical Sciences,
5(1), 8–19.

Sebag, M. And Ducoulombier, A (1998). Extending population-based incremental learning to
continuous search spaces. In International Conference on Parallel Problem Solving from
Nature, pages 418–427. Springer,

Umbarkar, A. J., Joshi, M. S., & Sheth, P. D. (2015). Dual population genetic algorithm for solving
constrained optimization problems. International Journal of Intelligent Systems and
Applications, 7(2), 34.

Usberti, F. L., França, P. M. and França, A. L. M. (2013) Grasp with evolutionary path-relinking for the
capacitated arc routing problem. Computers & Operations Research, 40(12), 3206–3217.

