Basit öğe kaydını göster

dc.contributor.authorBalkaya, N.
dc.contributor.authorOzcan, Hüseyin Kurtuluş
dc.contributor.authorUcan, O. Nuri
dc.date.accessioned2021-03-05T08:21:18Z
dc.date.available2021-03-05T08:21:18Z
dc.identifier.citationBalkaya N., Ozcan H. K. , Ucan O. N. , "Determination of relationship between hardness and groundwater quality parameters by neural networks", DESALINATION AND WATER TREATMENT, cilt.11, ss.258-263, 2009
dc.identifier.issn1944-3994
dc.identifier.othervv_1032021
dc.identifier.otherav_986c479b-8ee0-4637-badd-6a919fce411c
dc.identifier.urihttp://hdl.handle.net/20.500.12627/102579
dc.identifier.urihttps://doi.org/10.5004/dwt.2009.855
dc.description.abstractAll life forms on the earth contain water and water is crucial for any life form on the earth. Apart from being the essential ingredient if living organisms, water has numerous other uses and benefits. Groundwaters form a circle of the natural hydrologic chain like surface waters and the other water in the atmosphere. Hydrologic, hydraulic and geologic processes play important roles during underground water's formation, storage, underground flow and coming up to the surface of the earth. In this study, groundwater hardness quality at Samsun Incesu-Derekoy region was modeled by the use of Artificial Neural Network (ANN) structure. In the data set arrangement effective input variables are the five different water quality parameters (pH, chlorine, calcium, magnesium and total hardness) concentrations in the time "t", and the output variable (total hardness) is the concentrations in the time "t + 1". For the model 10,000 epochs were performed and the learning rate is equal to 0.1, and correlation coefficient (r) that achieved in this Study was found 0.591. As a result, we conclude that ANN is the effective modeling technique on estimation of environmental complex water quality problems.
dc.language.isoeng
dc.subjectZiraat
dc.subjectToprak ve Bitki Besleme
dc.subjectToprak ve Su Muhafazası ve Amenajmanı
dc.subjectHavza Yönetimi
dc.subjectKimya Mühendisliği ve Teknolojisi
dc.subjectMühendislik ve Teknoloji
dc.subjectTarım ve Çevre Bilimleri (AGE)
dc.subjectTarımsal Bilimler
dc.subjectÇevre / Ekoloji
dc.subjectSU KAYNAKLARI
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, KİMYASAL
dc.titleDetermination of relationship between hardness and groundwater quality parameters by neural networks
dc.typeMakale
dc.relation.journalDESALINATION AND WATER TREATMENT
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume11
dc.identifier.startpage258
dc.identifier.endpage263
dc.contributor.firstauthorID77361


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster