Show simple item record

dc.contributor.authorHazar, Muhammed Abdurrahman
dc.contributor.authorEnsari, Tolga
dc.contributor.authorOdabasioglu, Niyazi
dc.contributor.authorKavurucu, Yusuf
dc.date.accessioned2021-03-05T09:09:06Z
dc.date.available2021-03-05T09:09:06Z
dc.identifier.citationHazar M. A. , Odabasioglu N., Ensari T., Kavurucu Y., "Evaluation of Machine Learning Algorithms for Automatic Modulation Recognition", 22nd International Conference on Neural Information Processing (ICONIP), İstanbul, Türkiye, 9 - 12 Kasım 2015, cilt.9489, ss.208-215
dc.identifier.othervv_1032021
dc.identifier.otherav_9c820c57-396e-448b-9ffc-4fb4c6048ced
dc.identifier.urihttp://hdl.handle.net/20.500.12627/105171
dc.identifier.urihttps://doi.org/10.1007/978-3-319-26532-2_23
dc.description.abstractAutomatic modulation recognition (AMR) becomes more important because of usable in advanced general-purpose communication such as cognitive radio as well as specific applications. Therefore, developments should be made for widely used modulation types; machine learning techniques should be tried for this problem. In this study, we evaluate performance of different machine learning algorithms for AMR. Specifically, we propose nonnegative matrix factorization (NMF) technique and additionally we evaluate performance of artificial neural networks (ANN), support vector machines (SVM), random forest tree, k-nearest neighbor (k-NN), Hoeffding tree, logistic regression and Naive Bayes methods to obtain comparative results. These are most preferred feature extraction methods in the literature and they are used for a set of modulation types for general-purpose communication. We compare their recognition performance in accuracy metric. Additionally, we prepare and donate the first data set to University of California-Machine Learning Repository related with AMR.
dc.language.isoeng
dc.subjectBiyoenformatik
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleEvaluation of Machine Learning Algorithms for Automatic Modulation Recognition
dc.typeBildiri
dc.contributor.departmentDeniz Harp Okulu Komutanlığı , ,
dc.identifier.volume9489
dc.contributor.firstauthorID145734


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record