Basit öğe kaydını göster

dc.contributor.authorERBEY, Miray
dc.contributor.authorBalli, Tugce
dc.contributor.authorDENIZ, Sencer M.
dc.contributor.authorCEBECI, Bora
dc.contributor.authorDemiralp, Tamer
dc.contributor.authorDuru, Adil D.
dc.date.accessioned2021-03-05T10:48:40Z
dc.date.available2021-03-05T10:48:40Z
dc.identifier.citationBalli T., DENIZ S. M. , CEBECI B., ERBEY M., Duru A. D. , Demiralp T., "Emotion Recognition Based on Spatially Smooth Spectral Features of the EEG", 6th International IEEE EMBS Conference on Neural Engineering (NER), California, Amerika Birleşik Devletleri, 6 - 08 Kasım 2013, ss.407-410
dc.identifier.otherav_a5124da8-0d65-4a02-80dc-f8d61e83f06c
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/110397
dc.identifier.urihttps://doi.org/10.1109/ner.2013.6695958
dc.description.abstractThe primary aim of this study was to select the optimal feature subset for discrimination of three dimensions of emotions (arousal, valence, liking) from subjects using electroencephalogram (EEG) signals. The EEG signals were collected from 25 channels on 21 healthy subjects whilst they were watching movie segments with emotional content. The band power values extracted from eleven frequency bands, namely delta (0.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-12 Hz), beta (13-30 Hz), gamma (30-50 Hz), low theta (4-6 Hz), high theta (6-8 Hz), low alpha (8-10 Hz), high alpha (10-12 Hz), low beta (13-18 Hz) and high beta (18-30 Hz) bands, were used as EEG features. The most discriminative features for classification of EEG feature sets were selected using sequential floating forward search (SFFS) algorithm and a modified version of SFFS algorithm, which imposes the topographical smoothness of spectral features, along with linear discriminant analysis (LDA) classifier. The best classification accuracies for three emotional dimensions were obtained for liking (72.22%) followed by arousal (67.50%) and valence (66.67%). SFFS-LDA and modified SFFS-LDA algorithms produced slightly different classification accuracies. However, the findings suggested that the use of modified SFFS-LDA algorithm provides more robust feature subsets for understanding of underlying functional neuroanatomic mechanisms corresponding to distinct emotional states.
dc.language.isoeng
dc.subjectNEUROSCIENCES
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBiyomedikal Mühendisliği
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectSinirbilim ve Davranış
dc.subjectMühendislik ve Teknoloji
dc.subjectTemel Bilimler
dc.subjectYaşam Bilimleri
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectMühendislik
dc.titleEmotion Recognition Based on Spatially Smooth Spectral Features of the EEG
dc.typeBildiri
dc.contributor.departmentAltınbaş Üniversitesi , ,
dc.contributor.firstauthorID39957


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster