Show simple item record

dc.contributor.authorKurt, Mehmet Salih
dc.contributor.authorEnsari, Tolga
dc.date.accessioned2021-03-05T11:34:48Z
dc.date.available2021-03-05T11:34:48Z
dc.identifier.citationKurt M. S. , Ensari T., "Diabet Diagnosis with Support Vector Machines and Multi Layer Perceptron", Scientific Meeting on Electric Electronics, Computer Science, Biomedical Engineerings (EBBT), İstanbul, Türkiye, 20 - 21 Nisan 2017
dc.identifier.otherav_a8dda86b-f319-4b86-b28e-8b35e4605c84
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/112841
dc.identifier.urihttps://doi.org/10.1109/ebbt.2017.7956757
dc.description.abstractDiabet is one of the metabolic trouble which is generally occurs genetic and environmental components. It happens increasing of blood level. In this study, diabet illness has been diagnosed with its features by classification with support vector machines (SVM) and artificial neural networks (multi layer perceptron). The method used for diagnosis is aritificial neural networks multi layer perceptron. We used SVM-Linear, SVM-Polinomial and SVM-Radial models. Diabet data set which will be used in our experiments obtained from UCI web site and organized. In this study, we compared several algorithms to diagnose illness rates. Diagnose right predictions (accuracy) are %77.08 for multi layer perceptron, %77.47 for support vector machines, %55.33 for polynomial kernel, %65.10 for radial based kernel and sigmoid kernel. Maximum recognition rate is %77.47 for SVM learning method.
dc.language.isoeng
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik ve Teknoloji
dc.subjectBiyomedikal Mühendisliği
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.titleDiabet Diagnosis with Support Vector Machines and Multi Layer Perceptron
dc.typeBildiri
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.contributor.firstauthorID150513


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record