Basit öğe kaydını göster

dc.contributor.authorUcan, Osman Nuri
dc.contributor.authorGorgel, Pelin
dc.contributor.authorSertbas, Ahmet
dc.date.accessioned2021-03-05T11:51:45Z
dc.date.available2021-03-05T11:51:45Z
dc.date.issued2015
dc.identifier.citationGorgel P., Sertbas A., Ucan O. N. , "Computer-aided classification of breast masses in mammogram images based on spherical wavelet transform and support vector machines", EXPERT SYSTEMS, cilt.32, ss.155-164, 2015
dc.identifier.issn0266-4720
dc.identifier.othervv_1032021
dc.identifier.otherav_aa441f13-d492-43fe-abcc-bc7c31e02d75
dc.identifier.urihttp://hdl.handle.net/20.500.12627/113690
dc.identifier.urihttps://doi.org/10.1111/exsy.12073
dc.description.abstractBreast cancer can be effectively detected and diagnosed using the technology of digital mammography. However, although this technology has been rapidly developing recently, suspicious regions cannot be detected in some cases by radiologists, because of the noise or inappropriate mammogram contrast. This study presents a classification of segmented region of interests (ROIs) as either benign or malignant to serve as a second eye of the radiologists. Our study consists of three steps. In the first step, spherical wavelet transform (SWT) is applied to the original ROIs. In the second step, shape, boundary and grey level based features of wavelet (detail) and scaling (approximation) coefficients are extracted. Finally, in the third step, malignant/benign classification of the masses is implemented by giving the feature matrices to a support vector machine system. The proposed system achieves 91.4% and 90.1% classification accuracy using the dataset acquired from the hospital of Istanbul University in Turkey and the free Mammographic Image Analysis Society, respectively. Furthermore, discrete wavelet transform, which produces 83.3% classification accuracy, is applied to the coefficients to make a comparison with the SWT method.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectAlgoritmalar
dc.subjectBiyoenformatik
dc.subjectBilgisayar Bilimleri
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleComputer-aided classification of breast masses in mammogram images based on spherical wavelet transform and support vector machines
dc.typeMakale
dc.relation.journalEXPERT SYSTEMS
dc.contributor.departmentİstanbul Aydın Üniversitesi , ,
dc.identifier.volume32
dc.identifier.issue1
dc.identifier.startpage155
dc.identifier.endpage164
dc.contributor.firstauthorID81700


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster