Basit öğe kaydını göster

dc.contributor.authorGenc, Ibrahim
dc.contributor.authorGurvit, Hakan
dc.contributor.authorGuzelis, Cuneyt
dc.contributor.authorKaplan, Gulay B.
dc.contributor.authorSengor, Neslihan S.
dc.date.accessioned2021-03-02T21:49:45Z
dc.date.available2021-03-02T21:49:45Z
dc.date.issued2006
dc.identifier.citationKaplan G. B. , Sengor N. S. , Gurvit H., Genc I., Guzelis C., "A composite neural network model for perseveration and distractibility in the Wisconsin card sorting test", NEURAL NETWORKS, cilt.19, sa.4, ss.375-387, 2006
dc.identifier.issn0893-6080
dc.identifier.otherav_091c7872-c6e9-4d20-9922-cb280e51b960
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/11935
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2005.08.015
dc.description.abstractA composite artificial neural network model is proposed to simulate the performance of the Wisconsin Card Sorting Test. The Wisconsin Card Sorting Test is a test of executive functions where prefrontal deficits are matched to some quantitative measures such as percentage of perseverative errors and number of failures to maintain set. In this work, the proposed model is used to simulate the performances of healthy subjects and patients with prefrontal involvement particularly on these measures. The model is designed in such a way that one of the subsystems, namely, the Hopfield network, serves as the working memory and the other, the Hamming block, as the hypothesis generator. The results show that the proposed relatively simple model is capable of simulating the wide range of the performances of both normal subjects and prefrontal patients on the Wisconsin Card Sorting Test. While lowering the Hamming distance in the Hamming block gave rise to progressively more perseverative responses, changing the threshold vector of the Hopfield network resulted in more set maintenance failures. The former manipulation disrupts the abstraction or mental flexibility and the latter sustained attention or perseverance both of which are the major functions of the prefrontal system. (c) 2005 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectYaşam Bilimleri
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectNEUROSCIENCES
dc.subjectSinirbilim ve Davranış
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectBilgisayar Bilimi
dc.titleA composite neural network model for perseveration and distractibility in the Wisconsin card sorting test
dc.typeMakale
dc.relation.journalNEURAL NETWORKS
dc.contributor.department, ,
dc.identifier.volume19
dc.identifier.issue4
dc.identifier.startpage375
dc.identifier.endpage387
dc.contributor.firstauthorID178607


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster