Basit öğe kaydını göster

dc.contributor.authorAydogan, Davut
dc.date.accessioned2021-03-05T13:59:27Z
dc.date.available2021-03-05T13:59:27Z
dc.identifier.citationAydogan D., "CNNEDGEPOT: CNN based edge detection of 2D near surface potential field data", COMPUTERS & GEOSCIENCES, cilt.46, ss.1-8, 2012
dc.identifier.issn0098-3004
dc.identifier.othervv_1032021
dc.identifier.otherav_b4df1796-726a-4a73-90ba-2351fb2d8e8d
dc.identifier.urihttp://hdl.handle.net/20.500.12627/120444
dc.identifier.urihttps://doi.org/10.1016/j.cageo.2012.04.026
dc.description.abstractAll anomalies are important in the interpretation of gravity and magnetic data because they indicate some important structural features. One of the advantages of using gravity or magnetic data for searching contacts is to be detected buried structures whose signs could not be seen on the surface. In this paper, a general view of the cellular neural network (CNN) method with a large scale nonlinear circuit is presented focusing on its image processing applications. The proposed CNN model is used consecutively in order to extract body and body edges. The algorithm is a stochastic image processing method based on close neighborhood relationship of the cells and optimization of A, B and I matrices entitled as cloning template operators. Setting up a CNN (continues time cellular neural network (CTCNN) or discrete time cellular neural network (DTCNN)) for a particular task needs a proper selection of cloning templates which determine the dynamics of the method. The proposed algorithm is used for image enhancement and edge detection.
dc.language.isoeng
dc.subjectJeoloji Mühendisliği
dc.subjectBilgisayar Bilimleri
dc.subjectBilgisayar Grafiği
dc.subjectMühendislik ve Teknoloji
dc.subjectTemel Bilimler (SCI)
dc.subjectJEOLOJİ
dc.subjectYerbilimleri
dc.subjectYER BİLİMİ, MULTİDİSİPLİNER
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.titleCNNEDGEPOT: CNN based edge detection of 2D near surface potential field data
dc.typeMakale
dc.relation.journalCOMPUTERS & GEOSCIENCES
dc.contributor.departmentİstanbul Üniversitesi , Mühendislik Fakültesi , Jeofizik Müh.
dc.identifier.volume46
dc.identifier.startpage1
dc.identifier.endpage8
dc.contributor.firstauthorID15189


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster