Basit öğe kaydını göster

dc.contributor.authorSivri, Nuket
dc.contributor.authorSevgen, Selcuk
dc.contributor.authorSamli, Ruya
dc.contributor.authorKiremitci, VİLDAN ZÜLAL
dc.date.accessioned2021-03-05T14:06:40Z
dc.date.available2021-03-05T14:06:40Z
dc.date.issued2014
dc.identifier.citationSamli R., Sivri N., Sevgen S., Kiremitci V. Z. , "Applying Artificial Neural Networks for the Estimation of Chlorophyll-a Concentrations along the Istanbul Coast", POLISH JOURNAL OF ENVIRONMENTAL STUDIES, cilt.23, ss.1281-1287, 2014
dc.identifier.issn1230-1485
dc.identifier.othervv_1032021
dc.identifier.otherav_b5908233-27ba-4a4b-bf85-ef86dd40fbb2
dc.identifier.urihttp://hdl.handle.net/20.500.12627/120860
dc.description.abstractChlorophyll-a (chl-a) concentration is considered to be the main measure of phytoplankton biomass. The location and intensity of the surface chl-a maximum in a coastal area are governed by daylight hours, air and seawater temperatures, and nutrient availability in the euphotic zone. The aim of this study is to model a back-propagation neural network (BP-ANN) for estimating chlorophyll-a concentrations from obtained input values. In this study an ANN structure of 3 input neurons and 1 output neuron is used. The 3 inputs represent sea surface temperature (SST), air temperature, and daylight hours, while the output represents chl-a concentration respectively and hidden layers number which is dependent to the application is determined as 20. The ANN structure, which is simulated in MATLAB, estimated the data of the experiments. When compared to current data, it can be said that these are successful results and they provide ANN for estimating chl-a. In our ANN approach, the effects of all input/output parameters can be evaluated and various outputs can be obtained for different environments and predicted maximum chl-a data.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectÇEVRE BİLİMLERİ
dc.subjectÇevre / Ekoloji
dc.subjectTarım ve Çevre Bilimleri (AGE)
dc.subjectTarımsal Bilimler
dc.subjectÇevre Mühendisliği
dc.titleApplying Artificial Neural Networks for the Estimation of Chlorophyll-a Concentrations along the Istanbul Coast
dc.typeMakale
dc.relation.journalPOLISH JOURNAL OF ENVIRONMENTAL STUDIES
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume23
dc.identifier.issue4
dc.identifier.startpage1281
dc.identifier.endpage1287
dc.contributor.firstauthorID100013


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster