dc.contributor.author | Sari, Pelin | |
dc.contributor.author | Basar, Merve Dogruyol | |
dc.contributor.author | Kilic, Niyazi | |
dc.contributor.author | Akan, Aydin | |
dc.date.accessioned | 2021-03-05T17:20:27Z | |
dc.date.available | 2021-03-05T17:20:27Z | |
dc.identifier.citation | Basar M. D. , Sari P., Kilic N., Akan A., "Detection of Chronic Kidney Disease by Using Adaboost Ensemble Learning Approach", 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Türkiye, 16 - 19 Mayıs 2016, ss.773-776 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_c50a8680-83e3-48a4-a8be-0b76ae63f08e | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/130682 | |
dc.identifier.uri | https://doi.org/10.1109/siu.2016.7495854 | |
dc.description.abstract | Chronic kidney disease can be detected with several automatic diagnosis systems. In this study, chronic kidney diseases are diagnosed with Adaboost ensemble learning algorithm. Decision tree based classifiers are used in the diagnosis. The classification performance are evaluated with kappa, mean absolute error (MAE), root mean squared error (RMSE) and area under curve (AUC) criterias. Considering the performance analyses, it is observed that adaboost ensemble learning algorithm provides better classification performance than individual classification. | |
dc.language.iso | eng | |
dc.subject | Sinyal İşleme | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Mühendislik | |
dc.subject | MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK | |
dc.title | Detection of Chronic Kidney Disease by Using Adaboost Ensemble Learning Approach | |
dc.type | Bildiri | |
dc.contributor.department | İstanbul Üniversitesi , , | |
dc.contributor.firstauthorID | 148383 | |