Basit öğe kaydını göster

dc.contributor.authorBilgili, Erdem
dc.contributor.authorAkan, AYDIN
dc.contributor.authorKilic, Niyazi
dc.contributor.authorMert, Ahmet
dc.date.accessioned2021-03-05T19:32:32Z
dc.date.available2021-03-05T19:32:32Z
dc.identifier.citationMert A., Kilic N., Bilgili E., Akan A., "Breast Cancer Detection with Reduced Feature Set", COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015
dc.identifier.issn1748-670X
dc.identifier.othervv_1032021
dc.identifier.otherav_cfce519a-41cc-4467-b98f-85ee1add17cb
dc.identifier.urihttp://hdl.handle.net/20.500.12627/137388
dc.identifier.urihttps://doi.org/10.1155/2015/265138
dc.description.abstractThis paper explores feature reduction properties of independent component analysis (ICA) on breast cancer decision support system. Wisconsin diagnostic breast cancer (WDBC) dataset is reduced to one-dimensional feature vector computing an independent component (IC). The original data with 30 features and reduced one feature (IC) are used to evaluate diagnostic accuracy of the classifiers such as k-nearest neighbor (k-NN), artificial neural network (ANN), radial basis function neural network (RBFNN), and support vector machine (SVM). The comparison of the proposed classification using the IC with original feature set is also tested on different validation (5/10-fold cross-validations) and partitioning (20%-40%) methods. These classifiers are evaluated how to effectively categorize tumors as benign and malignant in terms of specificity, sensitivity, accuracy, F-score, Youden's index, discriminant power, and the receiver operating characteristic (ROC) curve with its criterion values including area under curve (AUC) and 95% confidential interval (CI). This represents an improvement in diagnostic decision support system, while reducing computational complexity.
dc.language.isoeng
dc.subjectYaşam Bilimleri
dc.subjectBiyoinformatik
dc.subjectTemel Bilimler
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyokimya
dc.subjectSağlık Bilimleri
dc.subjectTıp
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectBiyoloji ve Biyokimya
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.titleBreast Cancer Detection with Reduced Feature Set
dc.typeMakale
dc.relation.journalCOMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE
dc.contributor.departmentPiri Reis Üniversitesi , ,
dc.contributor.firstauthorID56153


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster