dc.contributor.author | PEKİN, Ayten | |
dc.contributor.author | Okten, Hasan Huseyin | |
dc.date.accessioned | 2021-03-05T20:14:04Z | |
dc.date.available | 2021-03-05T20:14:04Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Okten H. H. , PEKİN A., "ESSENTIAL SUPPLEMENTED LATTICES", MISKOLC MATHEMATICAL NOTES, cilt.21, ss.1013-1018, 2020 | |
dc.identifier.issn | 1787-2405 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_d31b9b68-13f0-4327-b21a-3fce1fc6b9cd | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/139404 | |
dc.identifier.uri | https://doi.org/10.18514/mmn.2020.3246 | |
dc.description.abstract | Let L be a complete modular lattice. If every essential element of L has a supplement in L, then L is called an essential supplemented (or briefly e-supplemented) lattice. In this work some properties of these lattices are investigated. Let L be a complete modular lattice and 1 = a(1)Va(2)V...Va(n) with a(i) is an element of L(1 <= i <= n). If ai/0 is e-supplemented for every i = 1,2, ..., n, then L is also e-supplemented. If L is e-supplemented, then 1/a is also e-supplemented for every a is an element of L. | |
dc.language.iso | eng | |
dc.subject | Algebra and Number Theory | |
dc.subject | General Mathematics | |
dc.subject | Physical Sciences | |
dc.subject | Mathematics (miscellaneous) | |
dc.subject | Analysis | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Matematik | |
dc.title | ESSENTIAL SUPPLEMENTED LATTICES | |
dc.type | Makale | |
dc.relation.journal | MISKOLC MATHEMATICAL NOTES | |
dc.contributor.department | Amasya Üniversitesi , , | |
dc.identifier.volume | 21 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 1013 | |
dc.identifier.endpage | 1018 | |
dc.contributor.firstauthorID | 2514002 | |