Basit öğe kaydını göster

dc.contributor.authorERTAŞ, Mustafa
dc.contributor.authorBaslo, Mehmet Barış
dc.contributor.authorUlgen, Yekta
dc.contributor.authorOzekes, Serhat
dc.contributor.authorOsman, Onur
dc.contributor.authorGoker, Imran
dc.date.accessioned2021-03-05T20:18:04Z
dc.date.available2021-03-05T20:18:04Z
dc.date.issued2012
dc.identifier.citationGoker I., Osman O., Ozekes S., Baslo M. B. , ERTAŞ M., Ulgen Y., "Classification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithms", JOURNAL OF MEDICAL SYSTEMS, cilt.36, ss.2705-2711, 2012
dc.identifier.issn0148-5598
dc.identifier.othervv_1032021
dc.identifier.otherav_d3774023-70d6-4152-b761-91a724ed8aa5
dc.identifier.urihttp://hdl.handle.net/20.500.12627/139606
dc.identifier.urihttps://doi.org/10.1007/s10916-011-9746-6
dc.description.abstractIn this paper, classification of Juvenile Myoclonic Epilepsy (JME) patients and healthy volunteers included into Normal Control (NC) groups was established using Feed-Forward Neural Networks (NN), Support Vector Machines (SVM), Decision Trees (DT), and Na < ve Bayes (NB) methods by utilizing the data obtained through the scanning EMG method used in a clinical study. An experimental setup was built for this purpose. 105 motor units were measured. 44 of them belonged to JME group consisting of 9 patients and 61 of them belonged to NC group comprising ten healthy volunteers. k-fold cross validation was applied to train and test the models. ROC curves were drawn for k values of 4, 6, 8 and 10. 100% of detection sensitivity was obtained for DT, NN, and NB classification methods. The lowest FP number, which was obtained by NN, was 5.
dc.language.isoeng
dc.subjectKlinik Tıp (MED)
dc.subjectSAĞLIK BAKIM BİLİMLERİ VE HİZMETLERİ
dc.subjectKlinik Tıp
dc.subjectTIBBİ BİLİŞİM
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectDahili Tıp Bilimleri
dc.subjectAile Hekimliği
dc.titleClassification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithms
dc.typeMakale
dc.relation.journalJOURNAL OF MEDICAL SYSTEMS
dc.contributor.departmentİstanbul Okan Üniversitesi , ,
dc.identifier.volume36
dc.identifier.issue5
dc.identifier.startpage2705
dc.identifier.endpage2711
dc.contributor.firstauthorID65234


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster