Basit öğe kaydını göster

dc.contributor.authorYilmazturk, Utku
dc.contributor.authorErkoc, Temha
dc.date.accessioned2021-03-05T21:32:19Z
dc.date.available2021-03-05T21:32:19Z
dc.date.issued2013
dc.identifier.citationErkoc T., Yilmazturk U., "Rational permutation groups containing a full cycle", MATHEMATICA SLOVACA, cilt.63, ss.1227-1232, 2013
dc.identifier.issn0139-9918
dc.identifier.otherav_d957a0ea-24e4-4964-8e57-3993a72283e9
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/143367
dc.identifier.urihttps://doi.org/10.2478/s12175-013-0167-5
dc.description.abstractA finite group whose irreducible complex characters are rational valued is called a rational group. Thus, G is a rational group if and only if N (G) (aOE (c) x >)/C (G) (aOE (c) x >) a parts per thousand OE Aut(aOE (c) x >) for every x a G. For example, all symmetric groups and their Sylow 2-subgroups are rational groups. Structure of rational groups have been studied extensively, but the general classification of rational groups has not been able to be done up to now. In this paper, we show that a full symmetric group of prime degree does not have any rational transitive proper subgroup and that a rational doubly transitive permutation group containing a full cycle is the full symmetric group. We also obtain several results related to the study of rational groups. (C) 2013 Mathematical Institute Slovak Academy of Sciences
dc.language.isoeng
dc.subjectMatematik
dc.subjectTemel Bilimler (SCI)
dc.titleRational permutation groups containing a full cycle
dc.typeMakale
dc.relation.journalMATHEMATICA SLOVACA
dc.contributor.departmentİstanbul Üniversitesi , Fen Fakültesi , Matematik Bölümü
dc.identifier.volume63
dc.identifier.issue6
dc.identifier.startpage1227
dc.identifier.endpage1232
dc.contributor.firstauthorID79776


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster