Basit öğe kaydını göster

dc.contributor.authorNizam Ozogur, Hatice
dc.contributor.authorORMAN, Zeynep
dc.contributor.authorOzogur, Gokhan
dc.date.accessioned2021-03-05T21:48:41Z
dc.date.available2021-03-05T21:48:41Z
dc.identifier.citationNizam Ozogur H., Ozogur G., ORMAN Z., "Blood glucose level prediction for diabetes based on modified fuzzy time series and particle swarm optimization", COMPUTATIONAL INTELLIGENCE, 2020
dc.identifier.issn0824-7935
dc.identifier.othervv_1032021
dc.identifier.otherav_dab9c47f-9b6c-4e5c-98d1-1fdbbffd1c49
dc.identifier.urihttp://hdl.handle.net/20.500.12627/144172
dc.identifier.urihttps://doi.org/10.1111/coin.12396
dc.description.abstractBlood glucose control is an essential goal for the patients who have Type-1 diabetes (T1D). The prediction of the blood glucose levels for the next 30-minute is crucial. If the predicted blood glucose level is in the critical ranges, and these predictions can be known in advance, then the patients can take the necessary cautions to prevent from it. In this article, we propose a modified fuzzy particle swarm optimization algorithm for the prediction of blood glucose levels of 30-minute after the last measurement. We form the average and patient-specific models to predict the blood glucose level of the patients. Both models are tested on two different datasets which contain patients with T1D. The experimental results are evaluated in terms of root mean squared error and Clarke error grid analysis metrics. The results indicate that our proposed modified algorithm is feasible to be applied to the prediction of blood glucose levels. In addition, this approach can assist patients with T1D for their blood glucose control.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectAlgoritmalar
dc.subjectBilgisayar Bilimleri
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleBlood glucose level prediction for diabetes based on modified fuzzy time series and particle swarm optimization
dc.typeMakale
dc.relation.journalCOMPUTATIONAL INTELLIGENCE
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , ,
dc.contributor.firstauthorID2286336


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster