Coulomb crystallites from harmonically confined charged bosons in two dimensions
Tarih
2008Yazar
Capuzzi, P.
Akdeniz, Z.
Okan, S. E.
Tosi, M. P.
Mese, A. I.
Üst veri
Tüm öğe kaydını gösterÖzet
We exploit rotational-symmetry breaking in the one-body density to examine the formation of structures in systems of N strongly coupled charged bosons with logarithmic repulsions inside isotropic two-dimensional harmonic traps, with N in the range from 2 to 7. The results serve as a map for ordered arrangements of vortices in a trapped Bose-Einstein condensate. Two types of N-body wavefunctions are assumed: (i) a permanent vertical bar psi(WM)> of N identical Gaussian orbitals centred at variationally determined sites, and (ii) a permanent vertical bar psi(SM)> of N orthogonal orbitals built from harmonic-oscillator energy eigenstates. With increasing coupling strength, the bosons in the vertical bar psi(WM)> orbitals localize into polygonal-ringlike crystalline patterns ('Wigner molecules'), whereas the wavefunctions vertical bar psi(SM)> describe low energy excited states containing delocalized bosons as in supersolid crystallites ('supermolecules'). For N = 2 at strong coupling both states describe a Wigner dimer.
Koleksiyonlar
- Makale [92796]