Basit öğe kaydını göster

dc.contributor.authorMert, Ahmet
dc.contributor.authorAkan, Aydin
dc.date.accessioned2021-03-06T08:38:31Z
dc.date.available2021-03-06T08:38:31Z
dc.identifier.citationMert A., Akan A., "HILBERT-HUANG TRANSFORM BASED HIERARCHICAL CLUSTERING FOR EEG DENOISING", 21st European Signal Processing Conference (EUSIPCO), Marrakush, Fas, 9 - 13 Eylül 2013
dc.identifier.othervv_1032021
dc.identifier.otherav_e1ed6435-b63e-4a74-8c93-26546379c163
dc.identifier.urihttp://hdl.handle.net/20.500.12627/148738
dc.description.abstractEmpirical mode decomposition (EMD) is a recently introduced decomposition method for non-stationary time series. The sum of the decomposed intrinsic mode functions (IMF) can be used to reconstruct the original signal. However, if the signal is corrupted by wideband additive noise, several IMFs may contain mostly noise components. Hence, it is a challenging study to determine which IMFs have informative oscillations or information free noise components. In this study, hierarchical clustering based on instantaneous frequencies (IF) of the IMFs obtained by the Hilbert-Huang Transform (HHT) is used to denoise the signal. Mean value of Euclidean distance similarity matrix is used as the threshold to determine the noisy components. The proposed method is tested on EEG signals corrupted by white Gaussian noise to show the denoising performance of the proposed method.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.titleHILBERT-HUANG TRANSFORM BASED HIERARCHICAL CLUSTERING FOR EEG DENOISING
dc.typeBildiri
dc.contributor.departmentPiri Reis Üniversitesi , ,
dc.contributor.firstauthorID141000


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster