Basit öğe kaydını göster

dc.contributor.authorOcak, Ibrahim
dc.contributor.authorSeker, Sadi Evren
dc.date.accessioned2021-03-06T09:14:27Z
dc.date.available2021-03-06T09:14:27Z
dc.date.issued2013
dc.identifier.citationOcak I., Seker S. E. , "Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes", ENVIRONMENTAL EARTH SCIENCES, cilt.70, ss.1263-1276, 2013
dc.identifier.issn1866-6280
dc.identifier.otherav_e4b8209a-8764-44c9-ad80-68ac5d435f26
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/150497
dc.identifier.urihttps://doi.org/10.1007/s12665-012-2214-x
dc.description.abstractIncreasing demand on infrastructures increases attention to shallow soft ground tunneling methods in urbanized areas. Especially in metro tunnel excavations, due to their large diameters, it is important to control the surface settlements observed before and after excavation, which may cause damage to surface structures. In order to solve this problem, earth pressure balance machines (EPBM) and slurry balance machines have been widely used throughout the world. There are numerous empirical, analytical, and numerical analysis methods that can be used to predict surface settlements. But substantially fewer approaches have been developed for artificial neural network-based prediction methods especially in EPBM tunneling. In this study, 18 different parameters have been collected by municipal authorities from field studies pertaining to EPBM operation factors, tunnel geometric properties, and ground properties. The data source has a preprocess phase for the selection of the most effective parameters for surface settlement prediction. This paper focuses on surface settlement prediction using three different methods: artificial neural network (ANN), support vector machines (SVM), and Gaussian processes (GP). The success of the study has decreased the error rate to 13, 12.8, and 9, respectively, which is relatively better than contemporary research.
dc.language.isoeng
dc.subjectZiraat
dc.subjectTarım ve Çevre Bilimleri (AGE)
dc.subjectÇevre / Ekoloji
dc.subjectÇEVRE BİLİMLERİ
dc.subjectJEOLOJİ
dc.subjectTarımsal Bilimler
dc.subjectYerbilimleri
dc.subjectToprak ve Bitki Besleme
dc.subjectToprak ve Su Muhafazası ve Amenajmanı
dc.subjectHavza Yönetimi
dc.subjectÇevre Mühendisliği
dc.subjectJeoloji Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectYER BİLİMİ, MULTİDİSİPLİNER
dc.subjectTemel Bilimler (SCI)
dc.subjectSU KAYNAKLARI
dc.titleCalculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes
dc.typeMakale
dc.relation.journalENVIRONMENTAL EARTH SCIENCES
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume70
dc.identifier.issue3
dc.identifier.startpage1263
dc.identifier.endpage1276
dc.contributor.firstauthorID66200


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster