Show simple item record

dc.contributor.authorErdal, Halil Ibrahim
dc.contributor.authorNamli, Ersin
dc.contributor.authorKarakurt, Onur
dc.date.accessioned2021-03-06T09:35:51Z
dc.date.available2021-03-06T09:35:51Z
dc.date.issued2013
dc.identifier.citationErdal H. I. , Karakurt O., Namli E., "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, cilt.26, ss.1246-1254, 2013
dc.identifier.issn0952-1976
dc.identifier.otherav_e64d501a-f042-4638-bd2e-d712a929ec41
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/151501
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2012.10.014
dc.description.abstractThis paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R-2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R-BANN(2)=0.9278, R-GBANN(2)=0.9270) are superior to a conventional ANN model (R-ANN(2)=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R-WBANN(2)=0.9397. R-WGBANN(2)=0.9528). (C) 2012 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectKontrol ve Sistem Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectHarita Mühendisliği-Geomatik
dc.subjectMÜHENDİSLİK, MULTİDİSİPLİNER
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectOTOMASYON & KONTROL SİSTEMLERİ
dc.titleHigh performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform
dc.typeMakale
dc.relation.journalENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
dc.contributor.departmentPrime Ministry Turkey , ,
dc.identifier.volume26
dc.identifier.issue4
dc.identifier.startpage1246
dc.identifier.endpage1254
dc.contributor.firstauthorID77288


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record