An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling
Abstract
Modeling a dead-time system is a common issue in engineering applications. To address this issue, existing research has employed neural networks and fuzzy logic-based intelligent systems. Herein, a dead-time system modeled with the aid of support vector machine regression, which has a good generalization feature, was investigated. The performance of the method proposed herein was examined with different parameters in linear and nonlinear dead-time systems.
Collections
- Makale [92796]