Basit öğe kaydını göster

dc.contributor.authorDogantekin, Esin
dc.contributor.authorCalisir, Duygu
dc.date.accessioned2021-03-06T12:05:09Z
dc.date.available2021-03-06T12:05:09Z
dc.date.issued2011
dc.identifier.citationCalisir D., Dogantekin E., "An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier", EXPERT SYSTEMS WITH APPLICATIONS, cilt.38, ss.8311-8315, 2011
dc.identifier.issn0957-4174
dc.identifier.otherav_f22aa3b9-b388-42ac-9022-1d91cc9a77a8
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/158859
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.01.017
dc.description.abstractIn this paper, an automatic diagnosis system for diabetes on Linear Discriminant Analysis (LDA) and Morlet Wavelet Support Vector Machine Classifier: LDA-MWSVM is introduced. The structure of this automatic system based on LDA-MWSVM for the diagnosis of diabetes is composed of three stages: The feature extraction and feature reduction stage by using the Linear Discriminant Analysis (LDA) method and the classification stage by using Morlet Wavelet Support Vector Machine (MWSVM) classifier stage. The Linear Discriminant Analysis (LDA) is used to separate features variables between healthy and patient (diabetes) data in the first stage. The healthy and patient (diabetes) features obtained in the first stage are given to inputs of the MWSVM classifier in the second stage. Finally, in the third stage, the correct diagnosis performance of this automatic system based on LDA-MWSVM for the diagnosis of diabetes is calculated by using sensitivity and specificity analysis, classification accuracy, and confusion matrix, respectively. The classification accuracy of this system was obtained at about 89.74%. (C) 2011 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectSosyal ve Beşeri Bilimler
dc.subjectEkonometri
dc.subjectYöneylem
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectEkonomi ve İş
dc.subjectSosyal Bilimler (SOC)
dc.subjectOPERASYON ARAŞTIRMA VE YÖNETİM BİLİMİ
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleAn automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier
dc.typeMakale
dc.relation.journalEXPERT SYSTEMS WITH APPLICATIONS
dc.contributor.departmentFırat Üniversitesi , ,
dc.identifier.volume38
dc.identifier.issue7
dc.identifier.startpage8311
dc.identifier.endpage8315
dc.contributor.firstauthorID201103


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster