Show simple item record

dc.contributor.authorDELİCE, ÖZGÜR
dc.contributor.authorOzer, Hatice
dc.contributor.authorBaykal, Ahmet
dc.date.accessioned2021-03-06T12:16:32Z
dc.date.available2021-03-06T12:16:32Z
dc.date.issued2016
dc.identifier.citationOzer H., Baykal A., DELİCE Ö., "Modified Einstein-Gauss-Bonnet gravity: Riemann-Cartan and pseudo-Riemannian cases", EUROPEAN PHYSICAL JOURNAL PLUS, cilt.131, 2016
dc.identifier.issn2190-5444
dc.identifier.otherav_f316c6fc-4ed9-4970-9dea-4ea6712a4e68
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/159406
dc.identifier.urihttps://doi.org/10.1140/epjp/i2016-16290-4
dc.description.abstractA modified Einstein-Gauss-Bonnet gravity in four dimensions where the quadratic Gauss-Bonnet term is coupled to a scalar field is considered. The field equations of the model are obtained by variational methods by making use of the constrained first-order formalism covering both pseudo-Riemannian and non-Riemannian cases. In the pseudo-Riemannian case, the Lagrange multiplier forms, which impose the vanishing torsion constraint, are eliminated in favor of the remaining fields and the resulting metric field equations are expressed in terms of the double dual curvature 2-form. In the non-Riemannian case with torsion, the field equations are expressed in terms of the pseudo-Riemannian quantities by a perturbative scheme valid for a weak coupling constant. It is shown that, for both cases, the model admits a maximally symmetric de Sitter solution with non-trivial scalar field. Minimal coupling of a Dirac spinor to the Gauss-Bonnet modified gravity is also discussed briefly.
dc.language.isoeng
dc.subjectTemel Bilimler
dc.subjectDisiplinlerarası Fizik ve İlgili Bilim ve Teknoloji Alanları
dc.subjectTemel Bilimler (SCI)
dc.subjectFizik
dc.subjectFİZİK, MULTİDİSİPLİNER
dc.titleModified Einstein-Gauss-Bonnet gravity: Riemann-Cartan and pseudo-Riemannian cases
dc.typeMakale
dc.relation.journalEUROPEAN PHYSICAL JOURNAL PLUS
dc.contributor.departmentOmer Halis Demir University , ,
dc.identifier.volume131
dc.identifier.issue8
dc.contributor.firstauthorID234150


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record