Show simple item record

dc.contributor.authorKilic, Niyazi
dc.contributor.authorTartar, Ahmet
dc.contributor.authorAkan, Aydin
dc.date.accessioned2021-03-06T21:26:15Z
dc.date.available2021-03-06T21:26:15Z
dc.identifier.citationTartar A., Kilic N., Akan A., "Bagging Support Vector Machine Approaches for Pulmonary Nodule Detection", International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunus, 6 - 08 Mayıs 2013, ss.47-50
dc.identifier.otherav_feacdaa5-12b0-4e3b-976a-ac55fdae3dbd
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/166543
dc.identifier.urihttps://doi.org/10.1109/codit.2013.6689518
dc.description.abstractIn this paper, pulmonary nodules extracted from computed tomography (CT) images are classified by the single and bagging support vector machine (SVM) classifiers. To determine features, two dimensional principal component analysis is performed. In order to select the best features, three different models are proposed. These models are tested with classifiers of both single SVM and bagging SVM. As a result of tests, bagging SVM is shown to be superior to single SVM.
dc.language.isoeng
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectKontrol ve Sistem Mühendisliği
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectSinyal İşleme
dc.subjectMühendislik ve Teknoloji
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik
dc.subjectOTOMASYON & KONTROL SİSTEMLERİ
dc.titleBagging Support Vector Machine Approaches for Pulmonary Nodule Detection
dc.typeBildiri
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.contributor.firstauthorID140915


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record