Show simple item record

dc.contributor.authorAvsar, Mukaddes
dc.contributor.authorKilic, Seda
dc.contributor.authorTurkcan, Gozde Kuru
dc.contributor.authorÇELİK, Betül
dc.contributor.authorAYDIN, Muhammed Ali
dc.contributor.authorOdemis, Demet
dc.contributor.authorTUNÇER, Şeref Buğra
dc.contributor.authorYAZICI, Hülya
dc.contributor.authorAKSU, Doğukan
dc.contributor.authorErdogan, Ozge Sukruoglu
dc.date.accessioned2021-12-10T11:03:20Z
dc.date.available2021-12-10T11:03:20Z
dc.identifier.citationYAZICI H., Odemis D., AKSU D., Erdogan O. S. , TUNÇER Ş. B. , Avsar M., Kilic S., Turkcan G. K. , ÇELİK B., AYDIN M. A. , "New Approach for Risk Estimation Algorithms of BRCA1/2 Negativeness Detection with Modelling Supervised Machine Learning Techniques", DISEASE MARKERS, cilt.2020, 2020
dc.identifier.issn0278-0240
dc.identifier.othervv_1032021
dc.identifier.otherav_64f03e96-9d61-4808-a17c-2857fdc01788
dc.identifier.urihttp://hdl.handle.net/20.500.12627/171117
dc.identifier.urihttps://avesis.istanbul.edu.tr/api/publication/64f03e96-9d61-4808-a17c-2857fdc01788/file
dc.identifier.urihttps://doi.org/10.1155/2020/8594090
dc.description.abstractBRCA1/2 gene testing is a difficult, expensive, and time-consuming test which requires excessive work load. The identification of the BRCA1/2 gene mutations is significantly important in the selection of treatment and the risk of secondary cancer. We aimed to develop an algorithm considering all the clinical, demographic, and genetic features of patients for identifying the BRCA1/2 negativity in the present study. An experimental dataset was created with the collection of the all clinical, demographic, and genetic features of breast cancer patients for 20 years. This dataset consisted of 125 features of 2070 high-risk breast cancer patients. All data were numeralized and normalized for detection of the BRCA1/2 negativity in the machine learning algorithm. The performance of the algorithm was identified by studying the machine learning model with the test data. k nearest neighbours (KNN) and decision tree (DT) accuracy rates of 9 features involving Dataset 2 were found to be the most effective. The removal of the unnecessary data in the dataset by reducing the number of features was shown to increase the accuracy rate of algorithm compared with the DT. BRCA1/2 negativity was identified without performing the BRCA1/2 gene test with 92.88% accuracy within minutes in high-risk breast cancer patients with this algorithm, and the test associated result waiting stress, time, and money loss were prevented. That algorithm is suggested be useful in fast performing of the treatment plans of patients and accurately in addition to speeding up the clinical practice.
dc.language.isoeng
dc.subjectTemel Bilimler
dc.subjectGenetics
dc.subjectMolecular Biology
dc.subjectBiotechnology
dc.subjectApplied Microbiology and Biotechnology
dc.subjectMolecular Medicine
dc.subjectHistology
dc.subjectPathology and Forensic Medicine
dc.subjectReviews and References (medical)
dc.subjectGenetics (clinical)
dc.subjectResearch and Theory
dc.subjectLife Sciences
dc.subjectHealth Sciences
dc.subjectBiochemistry (medical)
dc.subjectBİYOTEKNOLOJİ VE UYGULAMALI MİKROBİYOLOJİ
dc.subjectMikrobiyoloji
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectGENETİK VE HAYAT
dc.subjectMoleküler Biyoloji ve Genetik
dc.subjectTIP, ARAŞTIRMA VE DENEYSEL
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectPATOLOJİ
dc.subjectBiyoloji ve Biyokimya
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyokimya
dc.subjectDahili Tıp Bilimleri
dc.subjectTıbbi Genetik
dc.subjectTıbbi Ekoloji ve Hidroklimatoloji
dc.subjectCerrahi Tıp Bilimleri
dc.subjectPatoloji
dc.subjectYaşam Bilimleri
dc.subjectBiyoteknoloji
dc.subjectMoleküler Biyoloji ve Genetik
dc.titleNew Approach for Risk Estimation Algorithms of BRCA1/2 Negativeness Detection with Modelling Supervised Machine Learning Techniques
dc.typeMakale
dc.relation.journalDISEASE MARKERS
dc.contributor.departmentİstanbul Üniversitesi , Onkoloji Enstitüsü , Teşhis Tedavi Ve Bakım Hizmetleri
dc.identifier.volume2020
dc.contributor.firstauthorID2696376


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record