Basit öğe kaydını göster

dc.contributor.authorToprak, Muhammet S.
dc.contributor.authorBallikaya, Sedat
dc.contributor.authorYusuf, Aminu
dc.contributor.authorBAYHAN, Nevra
dc.contributor.authorTİRYAKİ, Hasan
dc.contributor.authorHamawandi, Bejan
dc.date.accessioned2021-12-10T11:23:55Z
dc.date.available2021-12-10T11:23:55Z
dc.identifier.citationYusuf A., BAYHAN N., TİRYAKİ H., Hamawandi B., Toprak M. S. , Ballikaya S., "Multi-objective optimization of concentrated Photovoltaic-Thermoelectric hybrid system via non-dominated sorting genetic algorithm (NSGA II)", ENERGY CONVERSION AND MANAGEMENT, cilt.236, 2021
dc.identifier.issn0196-8904
dc.identifier.otherav_7b2b50d3-a7b1-4868-80cb-a4cca5e4d64e
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/171817
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2021.114065
dc.description.abstractThermoelectric generators harvest additional electrical power when used in combination with concentrated photovoltaic cells given rise to a hybrid system. Overall cost of the system is high; therefore, the parameters of the system need to be optimized to obtain high output performance. This study determines the output performances of four sets of equations (models) used in the hybrid system, using the performance of recently developed nanostructured thermoelectric materials. Seven parameters of the system were optimized through these models using non-dominated genetic algorithm. Models 1 and 2 have the highest performance chosen by TOPSIS decision-making method. The power output and conversion efficiencies of the hybrid system in models 1 and 2 are 426.5 W, 11.45% and 461.12 W, 10.77%, respectively. Likewise, the highest TOPSIS solution for power output of one TEG module operating in the hybrid system and its corresponding efficiency is obtained in model 4 and are 1.97 W and 0.078%, respectively. This validates the fact that TEG operating in a hybrid system has optimum performance at a point when the load resistance is less than its internal resistance.
dc.language.isoeng
dc.subjectPhysical Sciences
dc.subjectEngineering (miscellaneous)
dc.subjectTERMODİNAMİK
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectENERJİ VE YAKITLAR
dc.subjectMEKANİK
dc.subjectTarımsal Bilimler
dc.subjectZiraat
dc.subjectTarım Makineleri
dc.subjectTarımda Enerji
dc.subjectBiyoyakıt Teknolojisi
dc.subjectMühendislik ve Teknoloji
dc.subjectEnergy Engineering and Power Technology
dc.subjectRenewable Energy, Sustainability and the Environment
dc.subjectGeneral Engineering
dc.subjectGeneral Energy
dc.subjectFuel Technology
dc.subjectEnergy (miscellaneous)
dc.titleMulti-objective optimization of concentrated Photovoltaic-Thermoelectric hybrid system via non-dominated sorting genetic algorithm (NSGA II)
dc.typeMakale
dc.relation.journalENERGY CONVERSION AND MANAGEMENT
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , ,
dc.identifier.volume236
dc.contributor.firstauthorID2638079


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster