dc.contributor.author | Kekec, Gulcan | |
dc.contributor.author | Bugeaud, Yann | |
dc.date.accessioned | 2021-12-10T12:23:11Z | |
dc.date.available | 2021-12-10T12:23:11Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Bugeaud Y., Kekec G., "ON SPRINDZUK'S CLASSIFICATION OF p-ADIC NUMBERS", JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, cilt.111, sa.2, ss.221-231, 2021 | |
dc.identifier.issn | 1446-7887 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_b957fb0e-3530-4c17-a9f2-65c04c3419da | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/173777 | |
dc.identifier.uri | https://doi.org/10.1017/s1446788719000454 | |
dc.description.abstract | We carry Sprindzuk's classification of the complex numbers to the field Q(p) of p-adic numbers. We establish several estimates for the p-adic distance between p-adic roots of integer polynomials, which we apply to show that almost all p-adic numbers, with respect to the Haar measure, are p-adic (S) over tilde -numbers of order 1. | |
dc.language.iso | eng | |
dc.subject | Algebra and Number Theory | |
dc.subject | General Mathematics | |
dc.subject | Mathematics (miscellaneous) | |
dc.subject | Physical Sciences | |
dc.subject | Analysis | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Matematik | |
dc.title | ON SPRINDZUK'S CLASSIFICATION OF p-ADIC NUMBERS | |
dc.type | Makale | |
dc.relation.journal | JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY | |
dc.contributor.department | Universites de Strasbourg Etablissements Associes , , | |
dc.identifier.volume | 111 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 221 | |
dc.identifier.endpage | 231 | |
dc.contributor.firstauthorID | 2736036 | |