Basit öğe kaydını göster

dc.contributor.authorMuftuoglu, Orkun
dc.contributor.authorOzbilen, Kemal Turgay
dc.contributor.authorAvci, Ozkan
dc.contributor.authorUgurlu, Adem
dc.contributor.authorCebeci, Zafer
dc.contributor.authorAltinkurt, Emre
dc.date.accessioned2021-12-10T12:59:23Z
dc.date.available2021-12-10T12:59:23Z
dc.identifier.citationAltinkurt E., Avci O., Muftuoglu O., Ugurlu A., Cebeci Z., Ozbilen K. T. , "Logistic Regression Model Using Scheimpflug-Placido Cornea Topographer Parameters to Diagnose Keratoconus", JOURNAL OF OPHTHALMOLOGY, cilt.2021, 2021
dc.identifier.issn2090-004X
dc.identifier.othervv_1032021
dc.identifier.otherav_e7245659-df58-4a8a-89c7-49b752d0a8d7
dc.identifier.urihttp://hdl.handle.net/20.500.12627/175176
dc.identifier.urihttps://doi.org/10.1155/2021/5528927
dc.identifier.urihttps://avesis.istanbul.edu.tr/api/publication/e7245659-df58-4a8a-89c7-49b752d0a8d7/file
dc.description.abstractPurpose. Diagnose keratoconus by establishing an effective logistic regression model from the data obtained with a Scheimpflug-Placido cornea topographer. Methods. Topographical parameters of 125 eyes of 70 patients diagnosed with keratoconus by clinical or topographical findings were compared with 120 eyes of 63 patients who were defined as keratorefractive surgery candidates. The receiver operating character (ROC) curve analysis was performed to determine the diagnostic ability of the topographic parameters. The data set of parameters with an AUROC (area under the ROC curve) value greater than 0.9 was analyzed with logistic regression analysis (LRA) to determine the most predictive model that could diagnose keratoconus. A logit formula of the model was built, and the logit values of every eye in the study were calculated according to this formula. Then, an ROC analysis of the logit values was done. Results. Baiocchi Calossi Versaci front index (BCVf) had the highest AUROC value (0.976) in the study. The LRA model, which had the highest prediction ability, had 97.5% accuracy, 96.8% sensitivity, and 99.2% specificity. The most significant parameters were found to be BCVf (p=0.001), BCVb (Baiocchi Calossi Versaci back) (p=0.002), posterior rf (apical radius of the flattest meridian of the aspherotoric surface in 4.5 mm diameter of the cornea) (p=0.005), central corneal thickness (p=0.072), and minimum corneal thickness (p=0.494). Conclusions. The LRA model can distinguish keratoconus corneas from normal ones with high accuracy without the need for complex computer algorithms.
dc.language.isoeng
dc.subjectOphthalmology
dc.subjectOptometry
dc.subjectHealth Sciences
dc.subjectCerrahi Tıp Bilimleri
dc.subjectGöz Hastalıkları ve Cerrahisi
dc.subjectSağlık Bilimleri
dc.subjectTıp
dc.subjectKlinik Tıp (MED)
dc.subjectKlinik Tıp
dc.subjectOFTALMOLOJİ
dc.titleLogistic Regression Model Using Scheimpflug-Placido Cornea Topographer Parameters to Diagnose Keratoconus
dc.typeMakale
dc.relation.journalJOURNAL OF OPHTHALMOLOGY
dc.contributor.departmentİstanbul Üniversitesi , İstanbul Tıp Fakültesi , Cerrahi Tıp Bilimleri Bölümü
dc.identifier.volume2021
dc.contributor.firstauthorID2695889


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster