Basit öğe kaydını göster

dc.contributor.authorTerzano, M.
dc.contributor.authorCerutti, S.
dc.contributor.authorMaglaveras, N.
dc.contributor.authorChouvarda, I.
dc.contributor.authorMendez, M. O.
dc.contributor.authorRosso, V.
dc.contributor.authorBianchi, A. M.
dc.contributor.authorParrino, L.
dc.contributor.authorGrassi, A.
dc.date.accessioned2022-02-18T09:05:11Z
dc.date.available2022-02-18T09:05:11Z
dc.date.issued2011
dc.identifier.citationChouvarda I., Mendez M. O. , Rosso V., Bianchi A. M. , Parrino L., Grassi A., Terzano M., Maglaveras N., Cerutti S., "Predicting EEG complexity from sleep macro and microstructure", PHYSIOLOGICAL MEASUREMENT, cilt.32, sa.8, ss.1083-1101, 2011
dc.identifier.issn0967-3334
dc.identifier.othervv_1032021
dc.identifier.otherav_17321827-91f2-45dc-9cbd-f784debda402
dc.identifier.urihttp://hdl.handle.net/20.500.12627/176478
dc.identifier.urihttps://doi.org/10.1088/0967-3334/32/8/006
dc.description.abstractThis work investigates the relation between the complexity of electroencephalography (EEG) signal, as measured by fractal dimension (FD), and normal sleep structure in terms of its macrostructure and microstructure. Sleep features are defined, encoding sleep stage and cyclic alternating pattern (CAP) related information, both in short and long term. The relevance of each sleep feature to the EEG FD is investigated, and the most informative ones are depicted. In order to quantitatively assess the relation between sleep characteristics and EEG dynamics, a modeling approach is proposed which employs subsets of the sleep macrostructure and microstructure features as input variables and predicts EEG FD based on these features of sleep micro/macrostructure. Different sleep feature sets are investigated along with linear and nonlinear models. Findings suggest that the EEG FD time series is best predicted by a nonlinear support vector machine (SVM) model, employing both sleep stage/transitions and CAP features at different time scales depending on the EEG activation subtype. This combination of features suggests that short-term and long-term history of macro and micro sleep events interact in a complex manner toward generating the dynamics of sleep.
dc.language.isoeng
dc.subjectBioengineering
dc.subjectPhysiology (medical)
dc.subjectBiochemistry (medical)
dc.subjectPhysical Sciences
dc.subjectLife Sciences
dc.subjectHealth Sciences
dc.subjectMühendislik ve Teknoloji
dc.subjectBiyofizik
dc.subjectBiyokimya
dc.subjectFizyoloji
dc.subjectBiyomedikal Mühendisliği
dc.subjectYaşam Bilimleri
dc.subjectTemel Bilimler
dc.subjectTemel Tıp Bilimleri
dc.subjectPhysiology
dc.subjectBiophysics
dc.subjectGeneral Engineering
dc.subjectEngineering (miscellaneous)
dc.subjectBİYOFİZİK
dc.subjectBiyoloji ve Biyokimya
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectFİZYOLOJİ
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectBiomedical Engineering
dc.titlePredicting EEG complexity from sleep macro and microstructure
dc.typeMakale
dc.relation.journalPHYSIOLOGICAL MEASUREMENT
dc.contributor.departmentAristotle University Of Thessaloniki , ,
dc.identifier.volume32
dc.identifier.issue8
dc.identifier.startpage1083
dc.identifier.endpage1101
dc.contributor.firstauthorID3378942


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster