Basit öğe kaydını göster

dc.contributor.authorPriori, Alberto
dc.contributor.authorBaselli, Giuseppe
dc.contributor.authorFoffani, Guglielmo
dc.contributor.authorBianchi, Anna M.
dc.date.accessioned2022-02-18T09:06:35Z
dc.date.available2022-02-18T09:06:35Z
dc.date.issued2004
dc.identifier.citationFoffani G., Bianchi A. M. , Priori A., Baselli G., "Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials", JOURNAL OF NEURAL ENGINEERING, cilt.1, sa.3, ss.165-173, 2004
dc.identifier.issn1741-2560
dc.identifier.othervv_1032021
dc.identifier.otherav_1a3ece0c-ea29-4cf3-8367-0dabbe914754
dc.identifier.urihttp://hdl.handle.net/20.500.12627/176540
dc.identifier.urihttps://doi.org/10.1088/1741-2560/1/3/006
dc.description.abstractWe propose a method that combines adaptive autoregressive (AAR) identification and spectral power decomposition for the study of movement-related spectral changes in scalp EEG signals and basal ganglia local field potentials (LFPs). This approach introduces the concept of movement-related poles, allowing one to study not only the classical event-related desynchronizations (ERD) and synchronizations (ERS), which correspond to modulations of power, but also event-related modulations of frequency. We applied the method to analyze movement-related EEG signals and LFPs contemporarily recorded from the sensorimotor cortex, the globus pallidus internus (GPi) and the subthalamic nucleus (STN) in a patient with Parkinson's disease who underwent stereotactic neurosurgery for the implant of deep brain stimulation (DBS) electrodes. In the AAR identification we compared the whale and the exponential forgetting factors, showing that the whale forgetting provides a better disturbance rejection and it is therefore more suitable to investigate movement-related brain activity. Movement-related power modulations were consistent with previous studies. In addition, movement-related frequency modulations were observed from both scalp EEG signals and basal ganglia LFPs. The method therefore represents an effective approach to the study of movement-related brain activity.
dc.language.isoeng
dc.subjectGeneral Engineering
dc.subjectHuman-Computer Interaction
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectBioengineering
dc.subjectLife Sciences
dc.subjectPhysical Sciences
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectNEUROSCIENCES
dc.subjectSinirbilim ve Davranış
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectBiyomedikal Mühendisliği
dc.subjectYaşam Bilimleri
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectDevelopmental Neuroscience
dc.subjectCellular and Molecular Neuroscience
dc.subjectCognitive Neuroscience
dc.subjectGeneral Neuroscience
dc.subjectNeuroscience (miscellaneous)
dc.subjectSensory Systems
dc.titleAdaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials
dc.typeMakale
dc.relation.journalJOURNAL OF NEURAL ENGINEERING
dc.contributor.departmentPolytechnic University of Milan , ,
dc.identifier.volume1
dc.identifier.issue3
dc.identifier.startpage165
dc.identifier.endpage173
dc.contributor.firstauthorID3372724


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster