Basit öğe kaydını göster

dc.contributor.authorMroginski, Maria A.
dc.contributor.authorWeidinger, Inez M.
dc.contributor.authorLeimkuehler, Silke
dc.contributor.authorWollenberger, Ulla
dc.contributor.authorHildebrandt, Peter
dc.contributor.authorSEZER, Murat
dc.contributor.authorSpricigo, Roberto
dc.contributor.authorUtesch, Tillmann
dc.contributor.authorMillo, Diego
dc.date.accessioned2022-02-18T09:07:10Z
dc.date.available2022-02-18T09:07:10Z
dc.date.issued2010
dc.identifier.citationSEZER M., Spricigo R., Utesch T., Millo D., Leimkuehler S., Mroginski M. A. , Wollenberger U., Hildebrandt P., Weidinger I. M. , "Redox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance Raman spectroscopic and electrochemical approach", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, cilt.12, sa.28, ss.7894-7903, 2010
dc.identifier.issn1463-9076
dc.identifier.othervv_1032021
dc.identifier.otherav_1ac99a07-8871-44b4-a465-a629d2462297
dc.identifier.urihttp://hdl.handle.net/20.500.12627/176548
dc.identifier.urihttps://doi.org/10.1039/b927226g
dc.description.abstractHuman sulfite oxidase (hSO) was immobilised on SAM-coated silver electrodes under preservation of the native heme pocket structure of the cytochrome b5 (Cyt b5) domain and the functionality of the enzyme. The redox properties and catalytic activity of the entire enzyme were studied by surface enhanced resonance Raman (SERR) spectroscopy and cyclic voltammetry (CV) and compared to the isolated heme domain when possible. It is shown that heterogeneous electron transfer and catalytic activity of hSO sensitively depend on the local environment of the enzyme. Increasing the ionic strength of the buffer solution leads to an increase of the heterogeneous electron transfer rate from 17 s(-1) to 440 s(-1) for hSO as determined by SERR spectroscopy. CV measurements demonstrate an increase of the apparent turnover rate for the immobilised hSO from 0.85 s(-1) in 100 mM buffer to 5.26 s(-1) in 750 mM buffer. We suggest that both effects originate from the increased mobility of the surface-bound enzyme with increasing ionic strength. In agreement with surface potential calculations we propose that at high ionic strength the enzyme is immobilised via the dimerisation domain to the SAM surface. The flexible loop region connecting the Moco and the Cyt b5 domain allows alternating contact with the Moco interaction site and the SAM surface, thereby promoting the sequential intramolecular and heterogeneous electron transfer from Moco via Cyt b5 to the electrode. At lower ionic strength, the contact time of the Cyt b5 domain with the SAM surface is longer, corresponding to a slower overall electron transfer process.
dc.language.isoeng
dc.subjectSurfaces and Interfaces
dc.subjectChemistry (miscellaneous)
dc.subjectGeneral Chemistry
dc.subjectPhysical and Theoretical Chemistry
dc.subjectAtomic and Molecular Physics, and Optics
dc.subjectSurfaces, Coatings and Films
dc.subjectPhysical Sciences
dc.subjectAtom ve Molekül Fiziği
dc.subjectFizikokimya
dc.subjectTemel Bilimler
dc.subjectFizik
dc.subjectFİZİKSEL, ATOMİK, MOLEKÜLER VE KİMYASAL
dc.subjectTemel Bilimler (SCI)
dc.subjectKimya
dc.subjectKİMYA, FİZİKSEL
dc.titleRedox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance Raman spectroscopic and electrochemical approach
dc.typeMakale
dc.relation.journalPHYSICAL CHEMISTRY CHEMICAL PHYSICS
dc.contributor.departmentTechnical University of Berlin , ,
dc.identifier.volume12
dc.identifier.issue28
dc.identifier.startpage7894
dc.identifier.endpage7903
dc.contributor.firstauthorID3377520


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster