Basit öğe kaydını göster

dc.contributor.authorCerutti, Sergio
dc.contributor.authorBianchi, Anna M.
dc.contributor.authorFranchin, Tiziana
dc.contributor.authorTana, Maria G.
dc.contributor.authorCannata, Vittorio
dc.date.accessioned2022-02-18T09:34:44Z
dc.date.available2022-02-18T09:34:44Z
dc.identifier.citationFranchin T., Tana M. G. , Cannata V., Cerutti S., Bianchi A. M. , "Independent Component Analysis of EEG-fMRI data for studying epilepsy and epileptic seizures", 35th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Osaka, Japonya, 3 - 07 Temmuz 2013, ss.6011-6014
dc.identifier.otherav_484f4f9b-987c-40b6-a7fc-75b1bc970a0f
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/177491
dc.description.abstractHere we present a method for classifying fMRI independent components (ICs) by using an optimized algorithm for the individuation of noisy signals from sources of interest. The method was applied to estimate brain activations from combined EEG-fMRI data for the exploration of epilepsy. Spatial ICA was performed using the above-mentioned optimized algorithm and other three popular algorithms. ICs were sorted considering the value: of the coefficients of determination R2, obtained from the multiple regression analysis with morphometric maps of cerebral matter; of the kurtosis, which features the signal energy. The validation of the method was performed comparing the brain activations obtained with those resulted using the General Linear Model (GLM). The ICA-derived activations in different datasets comprised subareas of the GLM-revealed activations, even if the volume and the shape of activated areas do not correspond exactly. The method proposed also detects additional negative regions implicated in a default mode of brain activity, and not clearly identified by GLM. Compared with a traditional GLM approach, the ICA one provides a flexible way to analyze fMRI data that reduces the assumptions placed upon the hemodynamic response of the brain and the temporal constrains.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBiyomedikal Mühendisliği
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectSignal Processing
dc.subjectGeneral Engineering
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectElectrical and Electronic Engineering
dc.subjectBioengineering
dc.subjectPhysical Sciences
dc.titleIndependent Component Analysis of EEG-fMRI data for studying epilepsy and epileptic seizures
dc.typeBildiri
dc.contributor.departmentBambino Gesu Childrens Hosp & Res Inst , ,
dc.contributor.firstauthorID3380682


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster