dc.contributor.author | Rubino, A. | |
dc.contributor.author | Cerutti, S. | |
dc.contributor.author | Nobili, L. | |
dc.contributor.author | Campana, C. | |
dc.contributor.author | Bianchi, A. M. | |
dc.contributor.author | Coelli, S. | |
dc.contributor.author | Maggioni, E. | |
dc.date.accessioned | 2022-02-18T09:44:55Z | |
dc.date.available | 2022-02-18T09:44:55Z | |
dc.identifier.citation | Coelli S., Maggioni E., Cerutti S., Nobili L., Rubino A., Campana C., Bianchi A. M. , "Functional Clustering approach for the analysis of Stereo-EEG activity patterns in correspondence of epileptic seizures", 39th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Güney Kore, 11 - 15 Temmuz 2017, ss.2806-2809 | |
dc.identifier.other | av_5ab1f624-c68c-42dc-bc0e-c059990aa96e | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/177901 | |
dc.description.abstract | In this study, a functional clustering approach is proposed and tested for the identification of brain functional networks emerging during sleep-related seizures. Stereo-EEG signals recorded in patients with Type II Focal Cortical Dysplasia (FCD type II), were analyzed. This novel approach is able to identify the network configuration changes in pre-ictal and early ictal periods, by grouping Stereo-EEG signals on the basis of the Cluster Index, after wavelet multiscale decomposition. Results showed that the proposed method is able to detect clusters of interacting leads, mainly overlapped on the Epileptogenic Zone (EZ) identified by a clinical expert, with distinctive configurations related to analyzed frequency ranges. This suggested the presence of coupling activities between the elements of the epileptic system at different frequency scales. | |
dc.language.iso | eng | |
dc.subject | Life Sciences | |
dc.subject | Health Sciences | |
dc.subject | Biomedical Engineering | |
dc.subject | Bioengineering | |
dc.subject | Biochemistry (medical) | |
dc.subject | Physical Sciences | |
dc.subject | BİYOFİZİK | |
dc.subject | Biyoloji ve Biyokimya | |
dc.subject | Yaşam Bilimleri (LIFE) | |
dc.subject | MÜHENDİSLİK, BİYOMEDİKSEL | |
dc.subject | Mühendislik | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Tıp | |
dc.subject | Sağlık Bilimleri | |
dc.subject | Temel Tıp Bilimleri | |
dc.subject | Biyofizik | |
dc.subject | Biyokimya | |
dc.subject | Biyomedikal Mühendisliği | |
dc.subject | Yaşam Bilimleri | |
dc.subject | Temel Bilimler | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Biophysics | |
dc.subject | General Engineering | |
dc.subject | Engineering (miscellaneous) | |
dc.title | Functional Clustering approach for the analysis of Stereo-EEG activity patterns in correspondence of epileptic seizures | |
dc.type | Bildiri | |
dc.contributor.department | Polytechnic University of Milan , , | |
dc.contributor.firstauthorID | 3385133 | |