dc.contributor.author | Bianchi, A. M. | |
dc.contributor.author | Sassi, R. | |
dc.contributor.author | Aktaruzzaman, M. | |
dc.contributor.author | Migliorini, M. | |
dc.contributor.author | Tenhunen, M. | |
dc.contributor.author | Himanen, S. L. | |
dc.date.accessioned | 2022-02-18T10:10:26Z | |
dc.date.available | 2022-02-18T10:10:26Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Aktaruzzaman M., Migliorini M., Tenhunen M., Himanen S. L. , Bianchi A. M. , Sassi R., "The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability", MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, cilt.53, sa.5, ss.415-425, 2015 | |
dc.identifier.issn | 0140-0118 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_8287de44-f067-4bdc-99fb-dcfed80339f0 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/178717 | |
dc.identifier.uri | https://doi.org/10.1007/s11517-015-1249-z | |
dc.description.abstract | The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications. | |
dc.language.iso | eng | |
dc.subject | Computer Graphics and Computer-Aided Design | |
dc.subject | BİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR | |
dc.subject | Bilgisayar Bilimi | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | MÜHENDİSLİK, BİYOMEDİKSEL | |
dc.subject | Mühendislik | |
dc.subject | MATEMATİKSEL VE BİLGİSAYAR BİYOLOJİSİ | |
dc.subject | Biyoloji ve Biyokimya | |
dc.subject | Yaşam Bilimleri (LIFE) | |
dc.subject | TIBBİ BİLİŞİM | |
dc.subject | Klinik Tıp | |
dc.subject | Klinik Tıp (MED) | |
dc.subject | Tıp | |
dc.subject | Sağlık Bilimleri | |
dc.subject | Temel Tıp Bilimleri | |
dc.subject | Biyoistatistik ve Tıp Bilişimi | |
dc.subject | Biyokimya | |
dc.subject | Bilgisayar Bilimleri | |
dc.subject | Bilgisayar Grafiği | |
dc.subject | Engineering (miscellaneous) | |
dc.subject | Biomedical Engineering | |
dc.subject | Computer Science (miscellaneous) | |
dc.subject | Bioengineering | |
dc.subject | Computer Science Applications | |
dc.subject | Health Informatics | |
dc.subject | Biochemistry (medical) | |
dc.subject | Physical Sciences | |
dc.subject | Health Sciences | |
dc.subject | Biyomedikal Mühendisliği | |
dc.subject | Yaşam Bilimleri | |
dc.subject | Biyoinformatik | |
dc.subject | Temel Bilimler | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | General Engineering | |
dc.subject | Computers in Earth Sciences | |
dc.subject | General Computer Science | |
dc.title | The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability | |
dc.type | Makale | |
dc.relation.journal | MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING | |
dc.contributor.department | University Of Milan , , | |
dc.identifier.volume | 53 | |
dc.identifier.issue | 5 | |
dc.identifier.startpage | 415 | |
dc.identifier.endpage | 425 | |
dc.contributor.firstauthorID | 3383252 | |