Basit öğe kaydını göster

dc.contributor.authorBianchi, A. M.
dc.contributor.authorSassi, R.
dc.contributor.authorAktaruzzaman, M.
dc.contributor.authorMigliorini, M.
dc.contributor.authorTenhunen, M.
dc.contributor.authorHimanen, S. L.
dc.date.accessioned2022-02-18T10:10:26Z
dc.date.available2022-02-18T10:10:26Z
dc.date.issued2015
dc.identifier.citationAktaruzzaman M., Migliorini M., Tenhunen M., Himanen S. L. , Bianchi A. M. , Sassi R., "The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability", MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, cilt.53, sa.5, ss.415-425, 2015
dc.identifier.issn0140-0118
dc.identifier.othervv_1032021
dc.identifier.otherav_8287de44-f067-4bdc-99fb-dcfed80339f0
dc.identifier.urihttp://hdl.handle.net/20.500.12627/178717
dc.identifier.urihttps://doi.org/10.1007/s11517-015-1249-z
dc.description.abstractThe work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.
dc.language.isoeng
dc.subjectComputer Graphics and Computer-Aided Design
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectMühendislik
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.subjectBiyoloji ve Biyokimya
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTIBBİ BİLİŞİM
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectBiyokimya
dc.subjectBilgisayar Bilimleri
dc.subjectBilgisayar Grafiği
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectComputer Science (miscellaneous)
dc.subjectBioengineering
dc.subjectComputer Science Applications
dc.subjectHealth Informatics
dc.subjectBiochemistry (medical)
dc.subjectPhysical Sciences
dc.subjectHealth Sciences
dc.subjectBiyomedikal Mühendisliği
dc.subjectYaşam Bilimleri
dc.subjectBiyoinformatik
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectGeneral Engineering
dc.subjectComputers in Earth Sciences
dc.subjectGeneral Computer Science
dc.titleThe addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability
dc.typeMakale
dc.relation.journalMEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
dc.contributor.departmentUniversity Of Milan , ,
dc.identifier.volume53
dc.identifier.issue5
dc.identifier.startpage415
dc.identifier.endpage425
dc.contributor.firstauthorID3383252


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster