dc.contributor.author | Yozgatlı, Koray | |
dc.contributor.author | Baştu, Ercan | |
dc.contributor.author | Gezer, Murat | |
dc.contributor.author | Uysal, Nefise | |
dc.contributor.author | Kar, Emre | |
dc.contributor.author | Yıldızcan, Ecem Nur | |
dc.date.accessioned | 2022-02-18T10:11:18Z | |
dc.date.available | 2022-02-18T10:11:18Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Uysal N., Yozgatlı K., Yıldızcan E. N. , Kar E., Gezer M., Baştu E., "İnsan Embriyo Segmentasyonu için U-Net Tabanlı Modellerin Karşılaştırılması", Bilişim Teknolojileri Dergisi, cilt.1, sa.1, ss.1-11, 2022 | |
dc.identifier.issn | 1307-9697 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_83820bfc-e144-485b-92fc-c35e60436e5d | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/178733 | |
dc.description.abstract | The quality of human embryos produced during in vitro fertilization is conventionally graded by clinicalembryologists and this process is time-consuming and prone to human error. Artificial intelligence methods may beused to grade images captured by time-lapse microscopy (TLM). Segmentation of embryos from the background ofTLM images is an essential step for embryo quality assessment as the background of the embryo has various artifactswhich may mislead the grading algorithms. In this study, we performed a comparative analysis of automated day-5human embryo (blastocyst) image segmentation methods based on deep learning. Four fully convolutional deep models,including U-Net and its three variants, were created using the combination of two gradient descent-based optimizers andtwo-loss functions and compared to our proposed model. The experimental results on the test set confirmed that ourcustomized Dilated Inception U-Net model with Adam optimizer and Dice loss outperformed other U-Net variants withDice coefficient, Jaccard index, accuracy, and precision of 98.68%, 97.52%, 99.20%, and 98.52%, respectively. | |
dc.language.iso | tur | |
dc.subject | BİLGİSAYAR BİLİMİ, YAPAY ZEKA | |
dc.subject | Bilgisayar Bilimleri | |
dc.subject | Yapay Zeka, Bilgisayarda Öğrenme ve Örüntü Tanıma | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Artificial Intelligence | |
dc.subject | General Computer Science | |
dc.subject | Computer Science (miscellaneous) | |
dc.subject | Computer Vision and Pattern Recognition | |
dc.subject | Computer Science Applications | |
dc.subject | Physical Sciences | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Bilgisayar Bilimi | |
dc.title | İnsan Embriyo Segmentasyonu için U-Net Tabanlı Modellerin Karşılaştırılması | |
dc.type | Makale | |
dc.relation.journal | Bilişim Teknolojileri Dergisi | |
dc.contributor.department | İstanbul Teknik Üniversitesi , Elektrik-Elektronik , Elektronik Ve Haberleşme Mühendisliği | |
dc.identifier.volume | 1 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 1 | |
dc.identifier.endpage | 11 | |
dc.contributor.firstauthorID | 2798471 | |