Show simple item record

dc.contributor.authorMatteucci, Matteo
dc.contributor.authorMendez, Martin O.
dc.contributor.authorBianchi, Anna Maria
dc.contributor.authorKortelainen, Juha M.
dc.contributor.authorCerutti, Sergio
dc.date.accessioned2022-02-18T10:26:31Z
dc.date.available2022-02-18T10:26:31Z
dc.date.issued2010
dc.identifier.citationKortelainen J. M. , Mendez M. O. , Bianchi A. M. , Matteucci M., Cerutti S., "Sleep Staging Based on Signals Acquired Through Bed Sensor", IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, cilt.14, sa.3, ss.776-785, 2010
dc.identifier.issn1089-7771
dc.identifier.othervv_1032021
dc.identifier.otherav_9c0e057c-fbdf-49c1-bdd8-64cef26e8096
dc.identifier.urihttp://hdl.handle.net/20.500.12627/179241
dc.identifier.urihttps://doi.org/10.1109/titb.2010.2044797
dc.description.abstractWe describe a system for the evaluation of the sleep macrostructure on the basis of Emfit sensor foils placed into bed mattress and of advanced signal processing. The signals on which the analysis is based are heart-beat interval (HBI) and movement activity obtained from the bed sensor, the relevant features and parameters obtained through a time-variant autoregressive model (TVAM) used as feature extractor, and the classification obtained through a hidden Markov model (HMM). Parameters coming from the joint probability of the HBI features were used as input to a HMM, while movement features are used for wake period detection. A total of 18 recordings from healthy subjects, including also reference polysomnography, were used for the validation of the system. When compared to wake-nonrapid-eye-movement (NREM)-REM classification provided by experts, the described system achieved a total accuracy of 79 +/- 9% and a kappa index of 0.43 +/- 0.17 with only two HBI features and one movement parameter, and a total accuracy of 79 +/- 10% and a kappa index of 0.44 +/- 0.19 with three HBI features and one movement parameter. These results suggest that the combination of HBI and movement features could be a suitable alternative for sleep staging with the advantage of low cost and simplicity.
dc.language.isoeng
dc.subjectBilgisayar Grafiği
dc.subjectYaşam Bilimleri
dc.subjectBiyoinformatik
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectComputers in Earth Sciences
dc.subjectComputer Graphics and Computer-Aided Design
dc.subjectGeneral Computer Science
dc.subjectComputer Science (miscellaneous)
dc.subjectInformation Systems
dc.subjectHealth Informatics
dc.subjectBiochemistry (medical)
dc.subjectPhysical Sciences
dc.subjectHealth Sciences
dc.subjectComputer Science Applications
dc.subjectBİLGİSAYAR BİLİMİ, BİLGİ SİSTEMLERİ
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.subjectBiyoloji ve Biyokimya
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTIBBİ BİLİŞİM
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectBiyokimya
dc.subjectBilgisayar Bilimleri
dc.subjectBilgi Güvenliği ve Güvenilirliği
dc.titleSleep Staging Based on Signals Acquired Through Bed Sensor
dc.typeMakale
dc.relation.journalIEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE
dc.contributor.departmentVTT Tech Res Ctr Finland , ,
dc.identifier.volume14
dc.identifier.issue3
dc.identifier.startpage776
dc.identifier.endpage785
dc.contributor.firstauthorID3377886


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record