Show simple item record

dc.contributor.authorOĞUL, HASAN
dc.contributor.authorHaberal, Ismail
dc.date.accessioned2022-02-18T10:52:03Z
dc.date.available2022-02-18T10:52:03Z
dc.date.issued2019
dc.identifier.citationHaberal I., OĞUL H., "Prediction of Protein Metal Binding Sites Using Deep Neural Networks", MOLECULAR INFORMATICS, cilt.38, sa.7, 2019
dc.identifier.issn1868-1743
dc.identifier.othervv_1032021
dc.identifier.otherav_c2f8a038-8239-46da-ba7f-6e71d3579b93
dc.identifier.urihttp://hdl.handle.net/20.500.12627/180063
dc.identifier.urihttps://doi.org/10.1002/minf.201800169
dc.description.abstractMetals have crucial roles for many physiological, pathological and diagnostic processes. Metal binding proteins or metalloproteins are important for metabolism functions. The proteins that reach the three-dimensional structure by folding show which vital function is fulfilled. The prediction of metal-binding in proteins will be considered as a step-in function assignment for new proteins, which helps to obtain functional proteins in genomic studies, is critical to protein function annotation and drug discovery. Computational predictions made by using machine learning methods from the data obtained from amino acid sequences are widely used in the protein metal-binding and various bioinformatics fields. In this work, we present three different deep learning architectures for prediction of metal-binding of Histidines (HIS) and Cysteines (CYS) amino acids. These architectures are as follows: 2D Convolutional Neural Network, Long-Short Term Memory and Recurrent Neural Network. Their comparison is carried out on the three different sets of attributes derived from a public dataset of protein sequences. These three sets of features extracted from the protein sequence were obtained using the PAM scoring matrix, protein composition server, and binary representation methods. The results show that a better performance for prediction of protein metal- binding sites is obtained through Convolutional Neural Network architecture.
dc.language.isoeng
dc.subjectPharmacology (medical)
dc.subjectKİMYA, TIP
dc.subjectKimya
dc.subjectTemel Bilimler (SCI)
dc.subjectTıp
dc.subjectBiochemistry (medical)
dc.subjectPharmacy
dc.subjectDrug Guides
dc.subjectPhysical Sciences
dc.subjectLife Sciences
dc.subjectHealth Sciences
dc.subjectComputers in Earth Sciences
dc.subjectComputer Graphics and Computer-Aided Design
dc.subjectGeneral Computer Science
dc.subjectChemistry (miscellaneous)
dc.subjectComputer Science (miscellaneous)
dc.subjectGeneral Chemistry
dc.subjectComputer Science Applications
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.subjectBiyoloji ve Biyokimya
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectFARMAKOLOJİ VE ECZACILIK
dc.subjectFarmakoloji ve Toksikoloji
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyokimya
dc.subjectEczacılık
dc.subjectTemel Eczacılık Bilimleri
dc.subjectBilgisayar Bilimleri
dc.subjectBilgisayar Grafiği
dc.subjectYaşam Bilimleri
dc.subjectBiyoinformatik
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectPharmacology
dc.subjectGeneral Pharmacology, Toxicology and Pharmaceutics
dc.subjectPharmacology, Toxicology and Pharmaceutics (miscellaneous)
dc.titlePrediction of Protein Metal Binding Sites Using Deep Neural Networks
dc.typeMakale
dc.relation.journalMOLECULAR INFORMATICS
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume38
dc.identifier.issue7
dc.contributor.firstauthorID3387397


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record