dc.contributor.author | Ensari, Tolga | |
dc.contributor.author | DAĞTEKİN, MUSTAFA | |
dc.contributor.author | Sonmez, Oznur Sinem | |
dc.date.accessioned | 2022-02-18T10:54:20Z | |
dc.date.available | 2022-02-18T10:54:20Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Sonmez O. S. , DAĞTEKİN M., Ensari T., "Gene expression data classification using genetic algorithm-based feature selection", TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, cilt.29, sa.7, ss.3165-3179, 2021 | |
dc.identifier.issn | 1300-0632 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_c566f948-208b-4bf1-8c00-b5b87cb654f9 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/180129 | |
dc.identifier.uri | https://doi.org/10.3906/elk-2102-110 | |
dc.description.abstract | In this study, hybrid methods are proposed for feature selection and classification of gene expression datasets. In the proposed genetic algorithm/supp ort vector machine (GA-SVM) and genetic algorithm/k nearest neighbor (GA-KNN) hybrid methods, genetic algorithm is improved using Pearson's correlation coefficient, Relief-F, or mutual information. Crossover and selection operations of the genetic algorithm are specialized. Eight different gene expression datasets are used for classification process. The classification performances of the proposed methods are compared with the traditional GA-KNN and GA-SVM wrapper methods and other studies in the literature. Classification results demonstrate that higher accuracy rates are obtained with the proposed methods compared to the other methods for all datasets. | |
dc.language.iso | eng | |
dc.subject | Mühendislik | |
dc.subject | Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği | |
dc.subject | Sinyal İşleme | |
dc.subject | Bilgisayar Bilimleri | |
dc.subject | Algoritmalar | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Signal Processing | |
dc.subject | General Engineering | |
dc.subject | Artificial Intelligence | |
dc.subject | General Computer Science | |
dc.subject | Engineering (miscellaneous) | |
dc.subject | Electrical and Electronic Engineering | |
dc.subject | BİLGİSAYAR BİLİMİ, YAPAY ZEKA | |
dc.subject | Computer Vision and Pattern Recognition | |
dc.subject | Computer Science Applications | |
dc.subject | Physical Sciences | |
dc.subject | Computer Science (miscellaneous) | |
dc.subject | Bilgisayar Bilimi | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK | |
dc.title | Gene expression data classification using genetic algorithm-based feature selection | |
dc.type | Makale | |
dc.relation.journal | TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES | |
dc.contributor.department | İstanbul Üniversitesi-Cerrahpaşa , , | |
dc.identifier.volume | 29 | |
dc.identifier.issue | 7 | |
dc.identifier.startpage | 3165 | |
dc.identifier.endpage | 3179 | |
dc.contributor.firstauthorID | 2772958 | |