Show simple item record

dc.contributor.authorKortelainen, Juha
dc.contributor.authorMendez, Martin O.
dc.contributor.authorNistico, Domenico
dc.contributor.authorArce-Santana, Edgar
dc.contributor.authorCerutti, Sergio
dc.contributor.authorMigliorini, Matteo
dc.contributor.authorBianchi, Anna M.
dc.date.accessioned2022-02-18T11:12:55Z
dc.date.available2022-02-18T11:12:55Z
dc.identifier.citationMigliorini M., Bianchi A. M. , Nistico D., Kortelainen J., Arce-Santana E., Cerutti S., Mendez M. O. , "Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors", 32nd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBC 10), Buenos Aires, Arjantin, 30 Ağustos - 04 Eylül 2010, ss.3273-3276
dc.identifier.othervv_1032021
dc.identifier.otherav_de6b51d2-0da8-4ba2-a806-bf580b9595bd
dc.identifier.urihttp://hdl.handle.net/20.500.12627/180670
dc.identifier.urihttps://doi.org/10.1109/iembs.2010.5627217
dc.description.abstractThis study presents different methods for automatic sleep classification based on heart rate variability (HRV), respiration and movement signals recorded through bed sensors. Two methods for feature extraction have been implemented: time variant-autoregressive model (TVAM) and wavelet discrete transform (WDT); the obtained features are fed into two classifiers: Quadratic (QD) and Linear (LD) discriminant for staging sleep in REM, nonREM and WAKE periods. The performances of all the possible combinations of feature extractors and classifiers are compared in terms of accuracy and kappa index, using clinica polysomographyc evaluation as golden standard. 17 recordings from healthy subjects, including also polisomnography, were used to train and test the algorithms. When automatic classification is compared. QD-TVAM algorithm achieved a total accuracy of 76.81 +/- 7.51 % and kappa index of 0.55 +/- 0.10, while LD-WDT achieved a total accuracy of 79 +/- 10% and kappa index of 0.51 +/- 0.17. The results suggest that a good sleep evaluation can be achieved through non-conventional recording systems that could be used outside sleep centers.
dc.language.isoeng
dc.subjectBiyomedikal Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectSignal Processing
dc.subjectGeneral Engineering
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectElectrical and Electronic Engineering
dc.subjectBioengineering
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectPhysical Sciences
dc.subjectSinyal İşleme
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.titleAutomatic sleep staging based on ballistocardiographic signals recorded through bed sensors
dc.typeBildiri
dc.contributor.departmentPolytechnic University of Milan , ,
dc.contributor.firstauthorID3377466


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record